Chapter 4.1

Nutrient status and trends in the Maryland Coastal Bays

Catherine Wazniak¹, Carol McCollough¹, Brian Sturgis², Carol Cain³

¹Maryland Department of Natural Resources, Tidewater Ecosystem Assessment, Annapolis, MD 21401 ²US Department of the Interior, National Park Service, Assateague Island National Seashore, Berlin, MD 21811 ³Maryland Coastal Bays Program, Berlin, MD 21811

Abstract

Nutrient data was analyzed from 87 stations for current status (total nitrogen total phosphorus, and ammonium) and 60 sites for long-term trends (same nutrients as status as well as nitratenitrite and orthophosphate). Assawoman Bay, St. Martin River, northern Isle of Wight Bay, and Newport Bay were severely enriched with nitrogen while Sinepuxent and Chincoteague bays had the lowest total nitrogen concentrations. Phosphorus enrichment was widespread, exceeding water quality thresholds at 95% of stations. Ammonium concentrations exceeded seagrass thresholds at 57% of sites and were potentially lethal at 15-22% of sites. Ammonium concentrations were highest in the Virginia portion of Chincoteague Bay and in tributaries watershed-wide. Combined linear and non-linear trends analysis detected 152 unique significant trends among all parameters and stations (50%). Most trends were improving; only 20 significant degrading trends were found (7%). Overall nutrient levels in the Maryland Coastal Bays are fair to poor with generally improving trends since 1999.

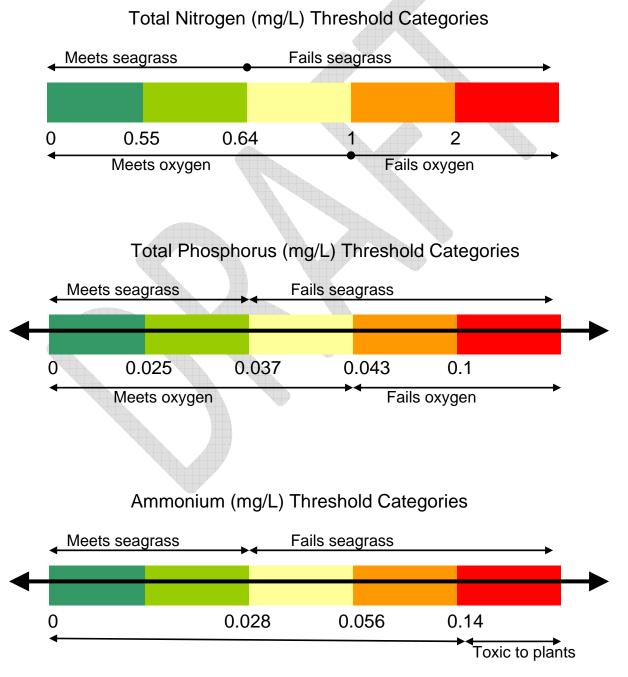
Introduction

Nutrient over-enrichment is a major threat to the Coastal Bays. Nutrients can enter the water column from a wide range of point and non-point sources. Non-point sources include agriculture (fertilizer and animal waste), septic systems, legacy groundwater, and natural sources (wetlands, marshes, and forests). Atmospheric deposition is another non-point source that can bring in nutrients from outside the watershed. Some non-point source inputs are often sporadic or ephemeral, as when a storm event causes large amounts of run-off, while others such as groundwater are more constant inputs. Non-point nutrient inputs are the major sources of nitrogen and phosphorus to the Coastal Bays. Point sources, such as sewage treatment plants, are estimated to account for only 4% of the total nutrient inputs. Total nitrogen (TN) and total phosphorus (TP) were used as indicators to reduce variability associated when measuring dissolved nutrients only. Increases in ammonium (NH_4) at relatively low concentrations have been associated with adverse effects on seagrasses (also known as submerged aquatic vegetation or SAV) (van Katwijk et al. 1997; Van der Heide et al. 2008). Van Katwijk showed concentrations of 3µM (9µM application) did not show toxic effects but at a concentration of 10µM (25µM application treatment) plants did exhibit toxic impacts. Ammonium toxicity effects were more pronounced in plants grown on sand and at higher temperatures (20°C) as found in the Coastal Bays.

Data Sets

Three separate but comparable water quality monitoring programs operate in the Coastal Bays (see Chapter 1.1). These programs are conducted by the Maryland Department of Natural Resources (DNR), the National Park Service at Assateague Island National Seashore (ASIS), and the Maryland Coastal Bays Program (MCBP) volunteer monitors. Figure 4.1.1 shows the locations of each station monitored between 2007 and 2013. A number of the same stations are sampled by two different programs (DNR and MCBP); however, the volunteer program samples more frequently. These provide useful quality assurance checks between monitoring programs, and may serendipitously result in better temporal coverage when sampling dates are not simultaneous. A full list of nutrient parameters monitored by ASIS and DNR is reported in the Maryland Coastal Bays Program Eutrophication Monitoring Plan (Wazniak 1999).

Management Objective: To achieve bay water concentrations of nutrients that meet seagrass thresholds.

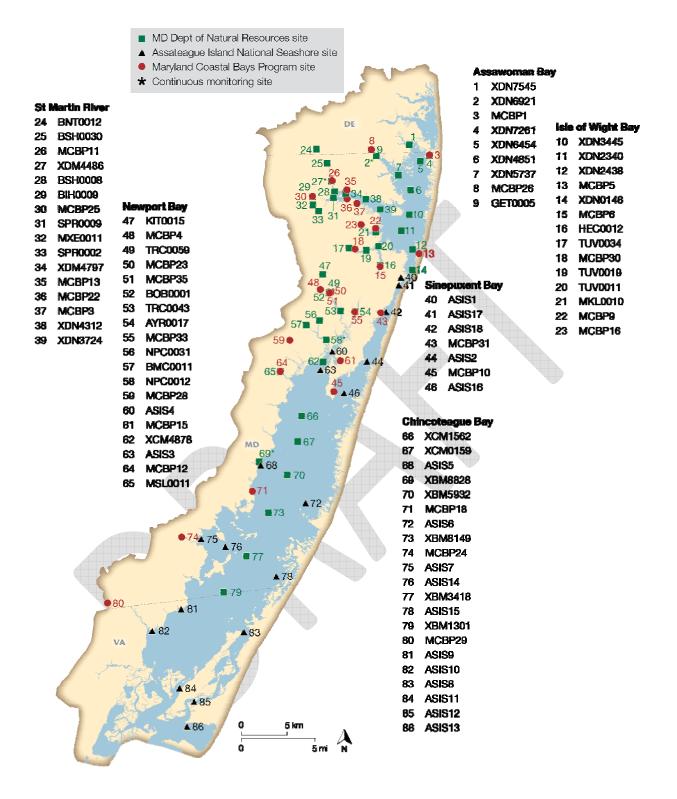

Nitrogen Indicators:	TN = 0.65 mg/L seagrass health TN = 1.0 mg/L eutrophic
Phosphorus Indicators:	TP = 0.037 mg/L seagrass health
	TP = 0.1 mg/L eutrophic
Ammonium Indicators:	$NH_4 = 2\mu M = 0.028 \text{ mg/L N as NH4}$
	$NH_4 = 4\mu M = 0.056 \text{ mg/L N}$ as NH4 seagrass health

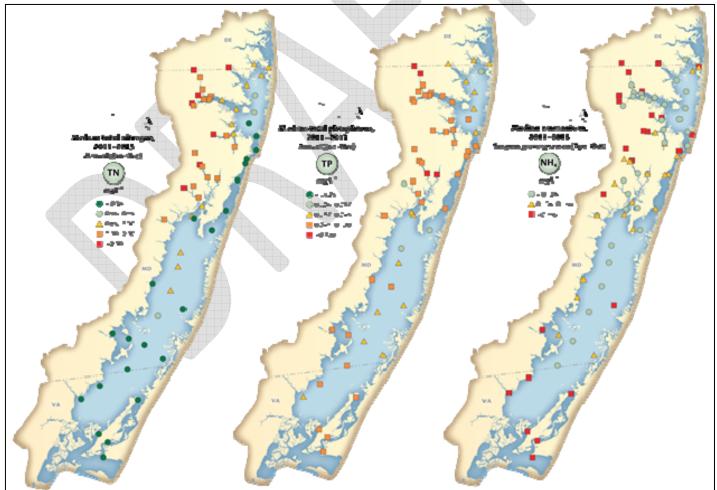
Analyses

<u>Status</u>

Median concentrations of TN, TP, and NH₄ were determined for rolling three-year periods between 2007-2013 for each DNR and ASIS monitoring station. Where data were available for specific 3-year periods, equivalent analyses were performed for MCBP stations (Figure 4.1.1). The Maryland Coastal Bays Scientific and Technical Advisory Committee (STAC) developed TN and TP threshold categories based on living resources indicators, most notably seagrass (Stevenson et al 1993) (Table 4.1.1). The NH₄ threshold of 4uM was suggested by Pat Glibert (pers. comm.) as harmful to seagrass health. Data from all months were used for TN and TP analyses, while data from only the seagrass growing season (April – October) were used for NH₄ analyses. Using a non-parametric Wilcoxon sign-rank test, median values were compared to threshold upper and lower boundaries. Medians that were significantly different than the boundary values at p<0.01 were considered statistically significant overall. Results are presented for all 3-year periods, with discussion focused on the most recent (2011-13). **Table 4.1.1** Threshold category values for TN, TP, and NH₄ in the Maryland Coastal Bays. Upper cutoff values are shown; lower cutoff values are the values from the previous category, forming category bounds for hypothesis testing. Bolded values are living resources indicator values as mandated by STAC.

Threshold criteria category	TN upper boundary value	TP upper boundary value	NH4 upper boundary value	
Better than seagrass objective	0.55 mg/L	0.025 mg/L		
Meets seagrass objective	0.64 mg/L	0.037 mg/L	0.028 mg/L	
Does not meet seagrass objective	1 mg/L	0.043 mg/L	0.056 mg/L	
Does not meet STAC objectives	2 mg/L	0.1 mg/L		
Does not meet any objectives	> 2 mg/L	> 0.1 mg/L	> 0.126 mg/L	




Figure 4.1.1 Water quality monitoring station locations.

<u>Trends</u>

Trend analyses were used to compare the effect of time on water quality parameters, including TN and TP, plus the dissolved parameters ammonium (NH₄), nitrate-nitrite (NO₂₃), and orthophosphate (PO₄). Linear and non-linear analyses were performed on all stations that have been sampled continuously since 1999 (since 2001 for a subset of DNR stations). At least 10 continuous years of data are required for trend analyses. No MCBP stations met that criterion, so trends were not determined for those stations. The Seasonal Kendall test was used to identify linear trends, and Sen's slope estimator was used to estimate the magnitude of change over time when a significant trend was present (Ebersole et al. 2002; Hirsch et al. 1982; Van Belle and Hughes 1984). For all trend tests, a significance level of p<0.01 was used to achieve the highest possible power. Where no linear trend was detected, non-linear trend analysis was performed to identify if trend direction reversals occurred during the analysis period (Wazniak et al. 2007).

Results: Status of nutrient concentrations

Rolling three year statuses of TN, TP, and NH_4 concentrations in each Coastal Bays segment were examined. Results focus on the most recent time-period (2011-2013). Figure 4.1.2 maps the status of each parameter for the most recent 3-year period, 2011-13. The status of NH_4 was determined to investigate potential impacts on seagrass growth in the bays.

Figure 4.1.2. 2011-13 status for total nitrogen, total phosphorous and ammonium at Maryland Department of Natural Resources and Assateague Island monitoring stations.

Assawoman Bay

Eight stations were monitored in Assawoman Bay. Only three stations met either the TN or TP seagrass thresholds, and their median values were not significantly different from the upper boundary value of the criterion. Two stations met TN thresholds for SAV. One station at the headwaters of Grey's Creek (GET0005) did not meet any STAC TN objective and was classified as eutrophic (Table 4.1.2a). Only one station (XDN6454 at RT 90) passed the TP threshold for SAV (Table 4.1.2b).

Table 4.1.	Table 4.1.2a: 3-year medians of TN (mg/L) in Assawoman Bay											
Area	STATION	07-09	08-10	09-11	10-12	11-13						
Grey's	MCBP26a					1.82						
Creek	GET0005 ^a	2.29	2.15	2.13	2.07	2.35						
Fenwick	XDN7261	1.01	0.96	0.86	0.81	0.72						
Ditch	MCBP1	0.67	0.67	0.65	0.56	0.51						
	XDN7545	0.98	0.99	0.97	0.82	0.75						
Assawoman	XDN6454	0.95	0.86	0.76	0.74	0.69						
Bay	XDN5737	0.92	0.93	0.84	0.74	0.72						
	XDN4851	0.66	0.66	0.66	0.61	0.56						

Ammonium was at reaching potentially toxic levels at the two stations in Grey's Creek and at sublethal impacts at one station on Fenwick Ditch (Table 4.1.2c). Nutrient data were compatible at the co-located sites on Grey's Creek (TN fell into different categories). (Figure 4.1.2)

Table 4.1.	Table 4.1.2b: 3-year medians of TP (mg/L) in Assawoman Bay											
Area	STATION	07-09	08-10	09-11	10-12	11-13						
Grey's	MCBP26a					0.034						
Creek	GET0005 ^a	0.058	0.059	0.051	0.056	0.042						
Fenwick	XDN7261	0.039	0.038	0.037	0.040	0.038						
Ditch	MCBP1	0.039	0.040	0.040	0.040	0.039						
	XDN7545	0.041	0.037	0.040	0.040	0.039						
Assawoman	XDN6454	0.036	0.035	0.039	0.039	0.037						
Bay	XDN5737	0.042	0.044	0.045	0.045	0.040						
	XDN4851	0.037	0.037	0.040	0.040	0.040						

Table 4.1.2	Table 4.1.2c: 3-year medians of NH4 (mg/L) in Assawoman Bay											
Area	STATION	07-09	08-10	09-11	10-12	11-13						
Grey's	MCBP26a					0.096						
Creek	GET0005 ^a	0.097	0.069	0.107	0.109	0.115						
Fenwick	XDN5737	0.025	0.024	0.025	0.016	0.020						
Ditch	MCBP1	0.124	0.178	0.155	0.138	0.111						
	XDN6454	0.041	0.049	0.056	0.027	0.035						
Assawoman	XDN7261	0.066	0.086	0.064	0.038	0.038						
Bay	XDN7545	0.030	0.029	0.022	0.020	0.021						
	XDN4851	0.029	0.019	0.017	0.014	0.016						

bold values are significantly different from boundary values in all tables grey cells have insufficient data for analysis

blank cells have no data for that timeframe

^a - stations with the same letter are co-located

St. Martin River

None of the 16 stations met TN or TP seagrass thresholds during any analytical timeframe. All stations but four were considered eutrophic for TN. The less impacted stations (XDN3724, XDN4312, M3 and M22) were located lower in the river, suggesting positive influence by water exchange with Isle of Wight Bay. Station XDN4312, in the mid St. Martin River, was on the cusp of STAC TN failure during 4 of 5 analytical timeframes (Table 4.1.3a). TP levels showed all sites were eutrophic (Table 4.1.3b)

Table 4.1	.3a 3-year n	nedians o	of TN (mg	g/L) in St	. Martin	River	1
Area	STATION	07-09	08-10	09-11	10-12	11-13	
	BNT0012	2.42	2.42	3.14	3.16	3.47	
Dist	BSH0030	2.58	2.69	2.78	2.77	2.68	
Bishopville	MCBP11					1.64	
Prong	XDM4486	2.07	1.97	1.92	1.77	1.84	
	BSH0008	1.68	1.69	1.63	1.59	1.58	
	MXE0011	1.50	1.50	1.43	1.39	1.32	
Shingle	BIH0009	2.55	2.43	2.23	2.14	2.19	
Landing	MCBP25					2.31	
Prong	SPR0009	1.55	1.56	1.64	1.34	1.35	
	SPR0002	1.52	1.43	1.43	1.29	1.30	
	MCBP13	1.24	1.24	1.16	1.11	1.19	
	XDM4797	1.25	1.20	1.14	1.08	1.15	
St. Martin	MCBP22	1.20	1.13	1.08	0.92	0.92	
River	MCBP3	0.98	0.86	0.83	0.67	0.66	
	XDN4312	0.97	0.98	1.02	0.99	0.95	
	XDN3724	0.78	0.78	0.85	0.80	0.76	

Table 4.1	.3b 3-year n	nedi ans o	of TP (mg	g/L) in St	. Martin	River
Area	STATION	07-09	08-10	09-11	10-12	11-13
	BNT0012	0.067	0.073	0.092	0.092	0.084
D' 1 '11	BSH0030	0.130	0.121	0.160	0.146	0.126
Bishopville	MCBP11					0.121
Prong	XDM4486	0.151	0.129	0.148	0.135	0.119
	BSH0008	0.089	0.082	0.112	0.105	0.096
	MXE0011	0.100	0.101	0.123	0.120	0.095
Shingle	BIH0009	0.085	0.077	0.097	0.100	0.083
Landing	MCBP25					0.057
Prong	SPR0009	0.101	0.094	0.104	0.093	0.084
	SPR0002	0.081	0.089	0.094	0.083	0.068
	MCBP13	0.077	0.091	0.078	0.073	0.083
	XDM4797	0.074	0.078	0.070	0.063	0.066
St. Martin	MCBP22	0.091	0.089	0.087	0.073	0.073
River	MCBP3	0.068	0.067	0.068	0.060	0.060
	XDN4312	0.055	0.058	0.066	0.066	0.059
	XDN3724	0.045	0.046	0.051	0.059	0.055

Median NH₄ concentrations during the SAV growing season passed at nine of the sites and was above concentrations considered to be lethal to seagrasses at five sites (Table 4.1.3c) and moderate at MCBP13. One site (M11) had sub-lethal NH₄ levels that are still harmful to seagrasses. (Figure 4.1.2)

Table 4.1.3	Bc 3-year m	edians of	f NH4 (m	g/L) in S	t. Martiı	n River
Area	STATION	07-09	08-10	09-11	10-12	11-13
	BNT0012	0.130	0.131	0.159	0.270	0.206
	BSH0030	0.098	0.096	0.138	0.109	0.143
Bishopville	MCBP11					0.037
Prong	XDM4486	0.016	0.011	0.016	0.010	0.021
	BSH0008	0.013	0.014	0.011	0.015	0.017
	MXE0011	0.098	0.122	0.131	0.151	0.160
Shingle	BIH0009	0.218	0.223	0.221	0.218	0.229
Landing	MCBP25					0.290
Prong	SPR0009	0.016	0.012	0.018	0.011	0.017
	SPR0002	0.011	0.007	0.010	0.010	0.016
	MCBP13	0.045	0.040	0.043	0.061	0.071
	XDM4797	0.013	0.012	0.012	0.012	0.012
St. Martin	MCBP22	0.028	0.015	0.015	0.015	0.016
River	MCBP3	0.034	0.025	0.023	0.018	0.021
	XDN4312	0.017	0.010	0.010	0.010	0.012
	XDN3724	0.024	0.016	0.011	0.010	0.011

Isle of Wight Bay

The five stations in the open bay and one on Manklin Creek consistently met the TN seagrass threshold (6/15 sites=40%) (Table 4.1.4a). Seven stations on Manklin, Turville, and Herring creeks consistently failed the TN seagrass threshold (MKL0010, TUV0011, TUV0019, TUV0034, HEC0012, M16, M30), of which 4 were considered eutrophic (TUV0019, TUV0034, M30, HEC0012) (Table 4.1.4a). Although no stations were considered eutrophic, no station met the TP seagrass threshold (11/15= 73%) (Table 4.1.4b). Stations in the open bay generally showed better TP conditions than stations in tributaries.

Table 4.1.4	Table 4.1.4a: 3-year medians of TN (mg/L) in Isle of Wight Bay						Table 4.1.	4b: 3-year r	nedians o	of TP (mg	g/L) in Is	le of Wig	ght Bay
Area	STATION	07-09	08-10	09-11	10-12	11-13	Area	STATION	07-09	08-10	09-11	10-12	11-13
Manklin	MCBP16	0.99	0.95	0.86	0.87	0.78	Manklin	MCBP16	0.095	0.074	0.066	0.064	0.070
Creek	MKL0010	0.75	0.76	0.76	0.74	0.68	Creek	MKL0010	0.050	0.052	0.052	0.045	0.044
Cleek	MCBP9	0.62	0.61	0.61	0.67	0.55	Cleek	MCBP9	0.064	0.074	0.076	0.076	0.072
	TUV0034	2.63	2.65	2.58	2.55	2.58		TUV0034	0.079	0.075	0.075	0.075	0.066
Turville	MCBP30	1.15	1.22	1.21	1.19	1.00	Turville	MCBP30	0.085	0.088	0.087	0.065	0.069
Creek	TUV0019	1.11	1.13	1.23	1.19	1.04	Creek	TUV0019	0.063	0.057	0.058	0.057	0.057
	TUV0011	0.75	0.75	0.77	0.77	0.73		TUV0011	0.050	0.046	0.047	0.046	0.047
Herring	HEC0012	1.04	1.02	0.97	0.99	1.03	Herring	HEC0012	0.066	0.061	0.067	0.064	0.064
Creek	MCBP6					0.69	Creek	MCBP6					0.064
	XDN3445	0.61	0.62	0.63	0.62	0.56		XDN3445	0.042	0.039	0.042	0.039	0.038
	XDN2340	0.55	0.56	0.56	0.56	0.50		XDN2340	0.039	0.041	0.046	0.047	0.047
Isle Of	MCBP34	0.54	0.56				Isle of	MCBP34	0.039	0.039			
Wight Bay	MCBP5	0.32	0.32	0.32	0.32	0.31	Wight Bay	MCBP5	0.038	0.042	0.044	0.043	0.041
	XDN2438	0.47	0.47	0.44	0.45	0.45		XDN2438	0.043	0.042	0.039	0.043	0.041
	XDN0146	0.46	0.46	0.47	0.47	0.46		XDN0146	0.048	0.041	0.042	0.043	0.046

Table 4.1.4	c 3-year me	dians of	NH4 (m	g/L) in Is	le of Wi	ght Bay
Area	STATION	07-09	08-10	09-11	10-12	11-13
M	MCBP16	0.049	0.046	0.040	0.046	0.047
Manklin Creek	MKL0010	0.013	0.009	0.009	0.007	0.011
	MCBP9	0.072	0.066	0.058	0.058	0.056
	TUV0034	0.042	0.041	0.038	0.042	0.039
Turville	MCBP30	0.081	0.056	0.040	0.040	0.038
Creek	TUV0019	0.034	0.024	0.019	0.019	0.022
	TUV0011	0.019	0.013	0.013	0.008	0.009
Herring	HEC0012	0.020	0.016	0.018	0.014	0.017
Creek	MCBP6					0.020
	XDN3445	0.027	0.020	0.010	0.010	0.010
	XDN2340	0.025	0.015	0.012	0.008	0.009
Isle of	MCBP34	0.027	0.027			
Wight Bay	MCBP5	0.036	0.037	0.039	0.041	0.045
	XDN2438	0.014	0.008	0.011	0.012	0.013
	XDN0146	0.017	0.014	0.014	0.014	0.014

Ammonium levels were generally good (9/14 stations, 64%, met NH4 thresholds), and only considered potentially harmful to seagrass at one station on Manklin Creek (M9) (Table 4.1.1c). No sites were monitored by multiple programs in Isle of Wight Bay. (Figure 4.1.2)

Sinepuxent Bay

TN concentrations were well below the seagrass threshold at all seven stations during all analytical timeframes (Table 4.1.5a). One station (A16) met the TP seagrass threshold during the most recent (2011-13) timeframe. During the same timeframe, most other stations failed the TP seagrass threshold. Five out of seven stations (71%) failed TP ecosystem health threshold and are considered eutrophic. TP status appears to be worsening over time at 4 of these 6 stations (Table 4.1.5b).

Table 4.1	Table 4.1.5a: 3-year medians of TN (mg/L) in Sinepuxent Bay						Table 4.1.5b: 3-year medians of TP (mg/L) in Sinepuxent Bay						
Area	STATION	07-09	08-10	09-11	10-12	11-13	Area	STATION	07-09	08-10	09-11	10-12	11-13
West OC Harbor	ASIS1	0.35	0.35	0.35	0.33	0.30	West OC Harbor	ASIS1	0.047	0.046	0.051	0.050	0.048
	ASIS17	0.28	0.28	0.27	0.26	0.24		ASIS17	0.041	0.037	0.040	0.044	0.050
	ASIS18	0.31	0.30	0.27	0.28	0.26		ASIS18	0.038	0.036	0.036	0.042	0.046
Sinepuxent	MCBP31	0.37	0.37	0.32	0.32	0.31	Sinepuxent	MCBP31	0.041	0.041	0.040	0.038	0.038
Bay	ASIS2	0.37	0.36	0.38	0.38	0.33	Bay	ASIS2	0.036	0.036	0.039	0.045	0.043
	MCBP10	0.41	0.43	0.43	0.43	0.38		MCBP10	0.031	0.032	0.042	0.043	0.049
	ASIS16	0.47	0.47	0.38	0.37	0.35		ASIS16	0.039	0.041	0.040	0.039	0.035

Median NH_4 concentrations were consistently high at the two northernmost stations (A1, A17), at levels harmful to seagrasses. The southernmost station (A16) fluctuated between meeting the seagrass objective (Table 4.1.5c). (Figure 4.1.2).

Table 4.1.	5c: 3-year n	nedians o	of NH4 (1	ng/L) in	Table 4.1.5c: 3-year medians of NH4 (mg/L) in Sinepuxent Bay											
Area	STATION	07-09	08-10	09-11	10-12	11-13										
West OC Harbor	ASIS1	0.111	0.104	0.095	0.091	0.088										
	ASIS17	0.065	0.095	0.073	0.073	0.054										
	ASIS18	0.053	0.047	0.036	0.042	0.048										
Sinepuxent	MCBP31	0.060	0.062	0.054	0.054	0.054										
Bay	ASIS2	0.031	0.021	0.032	0.082	0.042										
	MCBP10	0.035	0.036	0.035	0.046	0.046										
	ASIS16	0.027	0.045	0.019	0.034	0.025										

Newport Bay

All stations except one in the lower bay (ASIS 3) consistently failed the TN seagrass threshold. Trappe, Ayers, and Marshall creeks and Newport Creek failed the TN threshold and were also classified as eutrophic (Table 4.1.6a). Only one station consistently met the STAC TP threshold, at the head of Beaverdam Creek (BMC0011). During the first and last analysis periods, this station also met the seagrass threshold. All other sites except the two open bay sites failed the STAC TP threshold and were classified as eutrophic. Three stations on Trappe Creek (AYR0017, M33, TRC0043) fell into the most impacted category (Table 4.1.6b).

Results from one station sampled by both DNR and MCBP (TRC0059/M35) were inconsistent for TN and two sites were inconsistent for NH_4 - one on Ayres Creek (AYR0017/M33) and one on Marshall Creek (MSL0011/M12) (Figure 4.1.2a and c). These comparisons suggest possible variation in sample collection times that may have captured sporadic events.

Table 4.	1.6a: 3-year	median	s of TN (1	ng/L) in	Newport	Bay	Table 4.	1.6b: 3-yea	r median	s of TP (mg/L) in	Newpor	t Bay
Area	STATION	07-09	08-10	09-11	10-12	11-13	Area	STATION	07-09	08-10	09-11	10-12	11-13
	KIT0015	1.64	1.63	1.42	1.25	1.29		KIT0015	0.048	0.050	0.052	0.052	0.046
	BOB0001	3.01	2.92	3.01	2.76	2.69		BOB0001	0.055	0.057	0.073	0.071	0.046
T	MCBP4				2.81	2.60	T	MCBP4				0.092	0.073
Trappe	MCBP23	1.61	1.62	1.48	1.51	1.45	Trappe	MCBP23	0.049	0.046	0.058	0.062	0.061
Creek	TRC0059 ^a	1.81	1.78	1.74	1.74	1.74	Creek	TRC0059 ^a	0.073	0.073	0.086	0.079	0.052
	MCBP35 ^a	2.94	2.91	2.93	2.87	2.61		MCBP35 ^a	0.065	0.066	0.077	0.071	0.052
	TRC0043	1.85	1.76	1.74	1.70	1.68		TRC0043	0.117	0.114	0.109	0.113	0.108
Avers Creek	AYR0017 ^b	1.98	1.88	1.78	1.78	1.84	Ayers	AYR0017 ^b	0.113	0.106	0.098	0.106	0.108
Ayers Creek	MCBP33 ^b	1.41	1.57	1.53	1.44	1.33	Creek	MCBP33 ^b	0.074	0.073	0.101	0.119	0.119
Normort	BMC0011	5.78	5.55	5.55	5.50	5.91	Newspart	BMC0011	0.036	0.040	0.040	0.037	0.032
Newport Creek	NPC0031	1.65	1.49	1.51	1.53	1.64	Newport Creek	NPC0031	0.075	0.069	0.070	0.073	0.075
CIEEK	NPC0012	1.47	1.44	1.44	1.44	1.40	CIEEK	NPC0012	0.068	0.060	0.060	0.061	0.061
	MCBP15	0.73	0.76	0.73	0.80	0.73		MCBP15	0.035	0.033	0.051	0.055	0.053
Newport	XCM4878	0.89	0.88	0.82	0.81	0.76	Newport	XCM4878	0.050	0.044	0.043	0.041	0.040
Bay	ASIS4	0.82	0.86	0.81	0.79	0.65	Bay	ASIS4	0.064	0.063	0.060	0.055	0.047
	ASIS3	0.63	0.64	0.60	0.60	0.46		ASIS3	0.052	0.048	0.046	0.047	0.040
Bassett Ck	MCBP28	3.23	2.51	2.93	2.90	2.55	Bassett Ck	MCBP28	0.030	0.034	0.054	0.054	0.055
Marshall	MSL0011 ^c	1.78	1.71	1.56	1.55	1.60	Marshall	MSL0011 ^c	0.075	0.070	0.070	0.070	0.072
Creek	MCBP12 ^c	1.31	1.37	1.37	1.19	1.15	Creek	MCBP12 ^c	0.054	0.057	0.072	0.073	0.079

a, b, c: stations with the same letter are co-located

Newport Bay met the NH₄ seagrass threshold at seven stations (TRC0043, AYR0017, NPC0031, NPC0012, M15, XCM4878, MSL0011) but failed at 63% of sites (Table 4.1.6c). NH₄ levels were toxic to seagrasses at MCBP23.

Table 4.1	.6c: 3-year	medians	of NH4 ((mg/L) ir	n Newpor	rt Bay
Area	STATION	07-09	08-10	09-11	10-12	11-13
	KIT0015	0.057	0.054	0.056	0.071	0.080
	BOB0001	0.061	0.058	0.058	0.047	0.044
т	MCBP4				0.064	0.053
Trappe	MCBP23	0.130	0.106	0.109	0.114	0.142
Creek	TRC0059 ^a	0.112	0.095	0.092	0.097	0.086
	MCBP35 ^a	0.076	0.076	0.074	0.069	0.056
	TRC0043	0.014	0.011	0.009	0.009	0.015
Ayers	AYR0017 ^b	0.015	0.009	0.009	0.011	0.020
Creek	MCBP33 ^b	0.075	0.032	0.026	0.034	0.044
Marrie ant	BMC0011	0.034	0.034	0.033	0.039	0.039
Newport Creek	NPC0031	0.019	0.019	0.018	0.026	0.027
Cleek	NPC0012	0.021	0.016	0.014	0.014	0.018
	MCBP15	0.036	0.027	0.020	0.022	0.023
Newport	XCM4878	0.012	0.009	0.008	0.011	0.016
Bay	ASIS4	0.052	0.059	0.043	0.056	0.040
	ASIS3	0.064	0.063	0.063	0.063	0.038
Bassett Ck	MCBP28	0.057	0.045	0.056	0.074	0.083
Marshall	MSL0011 ^c	0.017	0.016	0.014	0.014	0.021
Creek	MCBP12 ^c	0.077	0.041	0.028	0.033	0.053

Chincoteague Bay

Three Maryland mainstem stations (XCM1562, XCM0159, and XBM8149) and the Marshall Creek station (MSL0011) consistently did not meet TN seagrass thresholds, while the other 14 stations did meet these thresholds during the most recent two 3-year analysis periods (Table 4.1.7a). Only one station (XCM1562) met the TP seagrass threshold, and only during the most recent (2011-13) 3-year analysis period (Table 4.1.7b). (Figure 4.1.2).

Table 4.1.7a: 3-year medians of TN (mg/L) in Chincoteague Bay						
Area	STATION	07-09	08-10	09-11	10-12	11-13
	XCM1562	0.72	0.71	0.72	0.70	0.67
	XCM0159	0.68	0.68	0.69	0.69	0.65
	ASIS5	0.99	0.57	0.48	0.46	0.41
	XBM5932	0.69	0.68	0.67	0.63	0.60
	MCBP18	0.48	0.46	0.49	0.48	0.38
and	ASIS6	0.96	0.47	0.42	0.42	0.38
Maryland	XBM8149	0.72	0.69	0.69	0.70	0.67
Ma	ASIS7	1.02	0.52	0.50	0.47	0.44
	ASIS14	0.73	0.47	0.40	0.40	0.35
	XBM3418	0.60	0.59	0.59	0.58	0.54
	ASIS15	0.79	0.45	0.39	0.39	0.35
	M27	0.53				
	XBM1301	0.56	0.56	0.54	0.57	0.54
	ASIS9	0.58	0.37	0.35	0.33	0.24
Virginia	ASIS10	0.56	0.41	0.35	0.32	0.29
	ASIS8	0.62	0.37	0.36	0.33	0.32
/irg	ASIS11	0.39	0.31	0.27	0.26	0.25
	ASIS12	0.39	0.31	0.27	0.27	0.24
	ASIS13	0.42	0.30	0.26	0.25	0.23

Table 4.1.7b: 3-year medians of TP (mg/L) in Chincoteague Bay							
Area	STATION	07-09	08-10	09-11	10-12	11-13	
	XCM1562	0.049	0.047	0.048	0.043	0.035	
	XCM0159	0.047	0.049	0.050	0.046	0.038	
	ASIS5	0.052	0.054	0.049	0.047	0.047	
	XBM5932	0.045	0.048	0.048	0.050	0.039	
	MCBP18	0.051	0.043	0.051	0.048	0.044	
Maryland	ASIS6	0.040	0.039	0.041	0.044	0.042	
- IZ	XBM8149	0.048	0.047	0.053	0.053	0.044	
Ma	ASIS7	0.049	0.051	0.052	0.050	0.049	
	ASIS14	0.039	0.040	0.043	0.045	0.043	
	XBM3418	0.041	0.041	0.043	0.048	0.042	
	ASIS15	0.039	0.040	0.040	0.040	0.038	
	M27	0.056					
	XBM1301	0.043	0.044	0.049	0.055	0.043	
	ASIS9	0.036	0.043	0.044	0.048	0.046	
ы	ASIS10	0.039	0.041	0.046	0.046	0.040	
ini	ASIS8	0.036	0.040	0.043	0.051	0.045	
Virginia	ASIS11	0.045	0.047	0.043	0.045	0.052	
	ASIS12	0.040	0.046	0.042	0.046	0.047	
	ASIS13	0.043	0.045	0.043	0.043	0.043	

Ammonium concentrations during the SAV growing season were very high at the eight stations (six in Virginia) and above concentrations harmful to seagrasses (toxic levels at ASIS 12 and borderline toxic at ASIS 6). An additional four stations had elevated NH₄, for a total of 12 of the 19 sites (63%) failing the seagrass threshold (Table 4.1.7c and Figure 4.1.2). All of the six stations located in Virginia had NH₄ concentrations well above the seagrass threshold during all analysis timeframes. The six open bay stations consistently met the seagrass threshold, but these stations are in deeper waters that are not considered seagrass habitat. One half of the sites located in Maryland failed the seagrass threshold.

Table 4.1.7	Table 4.1.7c: 3-year medians of NH4 (mg/L) in Chincoteague Bay							
Area	STATION	07-09	08-10	09-11	10-12	11-13		
	XCM1562	0.018	0.011	0.011	0.013	0.013		
	XCM0159	0.013	0.010	0.010	0.010	0.014		
	ASIS5	0.066	0.061	0.061	0.068	0.054		
	XBM5932	0.009	0.007	0.008	0.008	0.012		
pr	MCBP18	0.017	0.027	0.029	0.031	0.029		
ylaı	ASIS6	0.040	0.053	0.084	0.121	0.114		
Maryland	XBM8149	0.010	0.010	0.013	0.014	0.015		
~	ASIS7	0.037	0.062	0.087	0.106	0.062		
	ASIS14	0.057	0.042	0.052	0.053	0.045		
	XBM3418	0.010	0.012	0.015	0.015	0.014		
	ASIS15	0.042	0.060	0.032	0.065	0.032		
	XBM1301	0.017	0.016	0.017	0.016	0.024		
	ASIS9	0.072	0.098	0.115	0.115	0.073		
	ASIS10	0.104	0.113	0.113	0.086	0.070		
Virginio	ASIS8	0.088	0.090	0.101	0.095	0.084		
Virginia	ASIS11	0.068	0.083	0.092	0.092	0.084		
	ASIS12	0.081	0.100	0.118	0.135	0.131		
	ASIS13	0.062	0.053	0.074	0.112	0.103		

Results: Trends in nutrient concentration, 1999 - 2013

Sufficient data were available to perform trend analyses on all DNR and ASIS stations (60 total), but not on any MCBP stations. There were a number of significant linear trends, particularly for total nitrogen and dissolved nutrients. Improving (decreasing) nitrogen trends were found at 25 stations (42%), and only one station showed an increasing (degrading) trend (2%). Fewer linear trends were observed for total phosphorous, with eight decreasing (13%) and four increasing (7%). However, PO₄ showed linear trends at 16 stations, with 15 (25%) improving and only one (2%) degrading. Ammonium showed 17 linear trends, with six (10%) decreasing and 11 (18%) increasing; while 16 linear trends were found for NO₂₃ (13 were improving (22%) and three degrading (5%). The results of linear trend analyses are shown in Figure 4.1.3.

Significant non-linear trends for total and dissolved nutrients were also found among stations without significant linear trends. For TN, 17 stations (28%) demonstrated improvement and had significant inverted U-shaped non-linear trends. For TP, 20 stations (33%) had significant inverted U-shaped non-linear trends, while one station (2%) was degrading and showed a significant U-shaped trend. Non-linear trends for dissolved nutrients were found at 34 stations. Significant inverted U-shaped non-linear trends were found at one station for NH₄, 19 for NO₂₃, and 11 for PO₄. Significant U-shaped non-linear trends were found at one station for NH₄ and three stations for PO₄. Most critical inflection values for TN and TP occur during 2005-2007, while those for dissolved nutrients occurred during 2004-2010. The results of these analyses are shown in Figure 4.1.3

When both trend types are considered together, many stations showed improving trends, with 42 (70%) for TN, 28 (47%) for TP, seven (12%) for NH₄, 30 (50%) for NO₂₃, and 26 (43%) for PO₄. (Table 4.1.14). Descriptions of results by embayment follow (refer to Figure 4.1.1 for stations mentioned in text).

Assawoman Bay

Within this northernmost basin, all significant linear trends were improving (Table 4.1.8a). All open bay sites demonstrated improving TN, while the stream station at GET0005 had no trend. A trend in TP was found only at one open bay station (XDN7545). No significant linear trends were found for dissolved nutrients. No significant non-linear trends were found for stations that had no linear trend for total nutrients, however significant improving non-linear trends were found for NO₂₃ in Fenwick Ditch (XDN7261) and three stations (XDN545, XDN5737, XDN4851) in the northern portion of the open bay (Table 4.1.8b). (Figure 4.1.3)

 Table 4.1.8a Significant linear trends

 Assawoman Bay

Area	Station	p value	slope	parameter
Fenwick Ditch	XDN7545	0.0000	-0.0236	TN
	XDN7261	0.0000	-0.0340	TN
A	XDN6454	0.0000	-0.0180	TN
Assawoman Bay	XDN4851	0.0004	-0.0114	TN
	XDN5737	0.0049	-0.0117	TN
Assawoman Bay	XDN7545	0.0069	-0.0008	TP

Table 4.1.8b Significant non-linear trends
Assawoman Bay

1 Ibbu () Official Duy							
Area	Station	Trend Type	Critical Date	parameter			
Fenwick Ditch	XDN7545	inverted U	6-Nov-05	NO23			
	XDN7261	inverted U	12-Jun-07	NO23			
Assawoman Bay	XDN4851	inverted U	17-Feb-07	NO23			
	XDN5737	inverted U	9-May-06	NO23			
Assawoman Bay	XDN7261	U-shape	16-Jul-08	PO4			

St. Martin River

The two upstream stations on Spring Branch (BIH0009, MXE0011) and the upstream stations on the main river (XDM4797, XDN4312) all had significant improving TN linear trends (Table 4.1.9a). One significant inverted non-linear trend in TN was found at the downstream station of Bishopville Prong (BSH0008), with a critical inflection date in January 2004. All other linear TN trends were not significant. No significant linear trends for TP were found. A significant degrading linear trend for NH₄ was found in Birch Branch (BIH0009). All other linear trends for dissolved nutrients were not significant (Table 4.1.9a). Among stations without significant linear trends, a significant improving non-linear trend for TN was found in Bishopville Prong (BSH0008) (Table 4.1.9b). (Figure 4.1.3)

Area	Station	p value	slope	parameter
Spring Branch	MXE0011	0.0012	-0.0400	TN
Spring Branch	BIH0009	0.0100	-0.0455	TN
St. Martin River	XDM4797	0.0021	-0.0203	TN
St. Martin River	XDN4312	0.0052	-0.0121	TN
Coring Brough	MXE0011	0.0004	-0.0219	NO23
Spring Branch	SPR0009	0.0015	-0.0009	NO23
Spring Branch	BIH0009	0.0004	0.0060	NH4

Table 4.1.9a	Significant linear trends
C .	M C D'

Table 4.1.	9b Significant non-linear trends	
	St Martin River	

Area	Station	Trend Type	Critical Date	parameter
Bishopville Prong	BSH0008	inverted U	14-Jan-04	TN

Isle of Wight Bay

No significant linear trends were found for TN in Isle of Wight Bay. Two stations on Turville Creek (TUV0011, TUV0019) showed significant improving non-linear trends for TN (Table 4.1.10a and Figure 4.1.3).

Only one station had a significant improving trend for TP, the upstream station on Turville Creek (TUV0034). Significant inverted non-linear trends in TN were found in Turville Creek (TUV0019, TUV0034), both with the critical inflection value in December 2005. An inverted trend was also found for TP at TUV0019, with a critical inflection value in March 2006. These inverted trend reversals indicate improving conditions for nutrients that are not

reflected by linear trend analysis alone, and provide encouragement although status remains poor.

Significant improving linear trends were also observed for dissolved nutrients. Both the upstream and downstream stations on Turville Creek (TUV0011, TUV0034) showed a significant improving trend in NH₄. All three stations on Turville Creek (TUV0011, TUV0019, TUV0034) also had significant improving trends for PO₄. The station on Herring Creek (HEC0012) showed significant improving trends for both NO₂₃ and PO₄. A significant improving trend was also found at the station on Manklin Creek (MKL0010) (Table 4.1.10a and Figure 4.1.3).

Among stations and parameters without significant linear trends, significant non-linear trends were observed for both total and dissolved nutrients. In Turville Creek, significant improving trends were found for both TN and TP at TUV0019, and for TP alone at TUV0011. Significant trends for dissolved nutrients were found only at open bay stations, where an improving trend for NO₂₃ was observed at XDN2340, and degrading trends for PO₄ were found at XDN2438 and XDN0146, the closest stations to Ocean City Inlet (Table 4.1.10b and Figure 4.1.3).

Table 4.1.10a Significant linear trends	in Isle of
---	------------

Wight Bay							
Area	Station p value slo		slope	parameter			
Turville Creek	TUV0034	0.0000	-0.0023	TP			
Turville Creek	TUV0034	0.0023	-0.0009	NH4			
Turmile Creek	TUV0011	0.0072	-0.0008	NH4			
Herring Creek	HEC0012	0.0011	-0.0005	NO23			
Manklin Creek	MKL0010	0.0085	-0.0001	PO4			
	TUV0034	0.0000	-0.0011	PO4			
Turville Creek	TUV0019	0.0002	-0.0002	PO4			
	TUV0011	0.0019	-0.0001	PO4			
Herring Creek	HEC0012	0.0002	-0.0002	PO4			
Herring Creek	HEC0012	0.0002	-0.0002	PO4			

Table 4.1.10bSignificant non-linear trends inIsle of Wight Bay

	Area	Station	Trend Type	Critical Date	parameter						
	Turville Creek	TUV0019	inverted U	5-Dec-05	TN						
7	Turmile Creek	TUV0011	inverted U	6-Dec-05	TN						
	Turville Creek	TUV0019	inverted U	25-Mar-06	TP						
	Isle of Wight Bay	XDN2340	inverted U	15-Sep-06	NO23						
	Isle of Wight Bay	XDN0146	U-shape	2-Jun-08	PO4						
	Isle of Wight Bay	XDN2438	U-shape	25-Aug-08	PO4						

Sinepuxent Bay

A significant improving TN linear trend was found at the northernmost station (ASIS 1), closest to the Ocean City Inlet. No linear trends were found for TP. All significant linear trends for dissolved nutrients were degrading, with 3 for NH_4 (ASIS 16, ASIS 18, ASIS 17) and one for NO_{23} (ASIS 17) (Table 4.1.11a and Figure 4.1.3).

All ASIS stations besides A1 showed significant improving non-linear trends for TN. Two southern stations (ASIS 2, ASIS 16) showed improving non-linear trends for TP. The southern stations (ASIS 2, ASIS16, ASIS 18) all had significant improving non-linear trends for NO₂₃ and PO₄ (Table 4.1.11b and Figure 4.1.3).

Sinepuxent Bay									
Station	p value	slope	parameter						
ASIS1	0.0029	-0.0052	TN						
ASIS18	0.0091	0.0016	NH4						
ASIS17	0.0011	0.0023	NH4						
ASIS16	0.0038	0.0015	NH4						

Table 4.1.11a Significant linear trends in

 Table 4.1.11b
 Significant non-linear trends in

 Sinenuxent Bay

	Sinepuxent Bay							
	Station	Trend Type	Critical Date	parameter				
	ASIS17	inverted U	28-Jul-06	TN				
	ASIS18	inverted U	4-Jun-06	TN				
	ASIS2	inverted U	2-Jan-07	TN				
	ASIS16	inverted U	17-Mar-06	TN				
	ASIS2	inverted U	11-Oct-07	TP				
	ASIS16	inverted U	24-Jan-07	TP				
	ASIS18	inverted U	28-Mar-08	NO23				
	ASIS2	inverted U	26-Sep-07	NO23				
	ASIS16	inverted U	29-Apr-08	NO23				
1	ASIS18	inverted U	10-Feb-08	PO4				
1	ASIS2	inverted U	31-Jan-08	PO4				
	ASIS16	inverted U	21-May-08	PO4				
ŝ								

Newport Bay

Significant improving linear trends in TN were found at two of the upstream stations feeding Newport Creek (KIT0015, BOB0001), however the station on Beaverdam Creek (BMC0011), showed a degrading linear tend in TN concentrations. Two stations on the mainstem of Trappe Creek (TRC0043, TRC0059), two stations in Newport Bay (ASIS 3, ASIS 4), and Marshall Creek (MSL0011) also showed significant improving TN linear trends. Significant improving linear trends in NH₄ and NO₂₃ were also found at KIT0015 and TRC0059, and in NO₂₃ at TRC0043. Encouragingly, four stations that showed improvements in nitrogen also showed significant improving linear trends in phosphorus: both TP and PO₄ concentrations at KIT0015, TRC0043, and TRC0059; and TP at ASIS 4. While BMC0011 had significant degrading linear trends for TN and NO₂₃, it had a significant improving linear trend in TP (Table 4.1.12a and Figure 4.1.3).

Three stations in the open bay (ASIS 3, ASIS 4, XCM4878) showed significant inverted nonlinear trends for both TN and TP (Table 4.1.12b and Figure 4.1.3).

Newport Bay								
Area	Station	p value	slope	parameter				
	KIT0015	0.0000	-0.2536	TN				
Trappe Creek	BOB0001	0.0004	-0.0475	TN				
	TRC0059	0.0000	-0.1405	TN				
	TRC0043	0.0000	-0.0550	TN				
Newport Creek	ASIS4	0.0001	-0.0166	TN				
Newport Bay	ASIS3	0.0097	-0.0079	TN				
Marshall Creek	MSL0011	0.0077	-0.0294	TN				
Newport Creek	BMC0011	0.0000	0.0784	TN				
	KIT0015	0.0000	-0.0139	TP				
Trappe Creek	TRC0059	0.0000	-0.0099	TP				
	TRC0043	0.0000	-0.0091	TP				
Newport Creek	BMC0011	0.0005	-0.0011	TP				
Newport Bay	ASIS4	0.0042	-0.0010	TP				
Tronno Crook	KIT0015	0.0000	-0.0132	NH4				
Trappe Creek	TRC0059	0.0000	-0.0105	NH4				
Newport Creek	BMC0011	0.0050	-0.0007	NH4				
Marshall Creek	MSL0011	0.0002	-0.0030	NH4				
	KIT0015	0.0000	-0.1110	NO23				
Trappe Creek	BOB0001	0.0002	-0.0401	NO23				
Парре Стеек	TRC0059	0.0000	-0.0870	NO23				
	TRC0043	0.0006	-0.0007	NO23				
Ayers Creek	AYR0017	0.0009	-0.0008	NO23				
Newport Bay	XCM4878	0.0012	-0.0003	NO23				
Newport Creek	BMC0011	0.0000	0.0809	NO23				
	KIT0015	0.0000	-0.0056	PO4				
Treese Corel	BOB0001	0.0027	-0.0006	PO4				
Trappe Creek	TRC0059	0.0000	-0.0045	PO4				
	TRC0043	0.0000	-0.0011	PO4				
Ayers Creek	AYR0017	0.0021	-0.0003	PO4				
Newport Creek	BMC0011	0.0026	-0.0004	PO4				
Marshall Creek	MSL0011	0.0011	-0.0003	PO4				
Newport Bay	XCM4878	0.0005	-0.0001	PO4				

Table 4.1.12a Significant linear trends in Newport Bay

 Table 4.1.12b
 Significant non-linear trendsin

 Newport Bay

Newport Bay									
Station	Trend Type	Critical Date	parameter						
XCM4878	inverted U	9-Feb-06	TN						
MSL0011	inverted U	2-Jun-07	TP						
XCM4878	inverted U	27-Dec-05	TP						
ASIS3	inverted U	6-Oct-06	TP						
ASIS4	inverted U	4-Oct-07	NH4						
NPC0031	U-shape	2-Jan-07	NH4						
ASIS4	inverted U	7-Mar-07	NO23						
ASIS3	inverted U	19-Jun-06	NO23						
ASIS4	inverted U	30-Jul-07	PO4						
ASIS3	inverted U	19-Jun-08	PO4						
	XCM4878 MSL0011 XCM4878 ASIS3 ASIS4 NPC0031 ASIS4 ASIS3 ASIS4	XCM4878inverted UMSL0011inverted UXCM4878inverted UASIS3inverted UASIS4inverted UNPC0031U-shapeASIS4inverted UASIS3inverted UASIS4inverted U	XCM4878inverted U9-Feb-06MSL0011inverted U2-Jun-07XCM4878inverted U27-Dec-05ASIS3inverted U6-Oct-06ASIS4inverted U4-Oct-07NPC0031U-shape2-Jan-07ASIS4inverted U7-Mar-07ASIS3inverted U19-Jun-06ASIS4inverted U30-Jul-07						

Chincoteague Bay

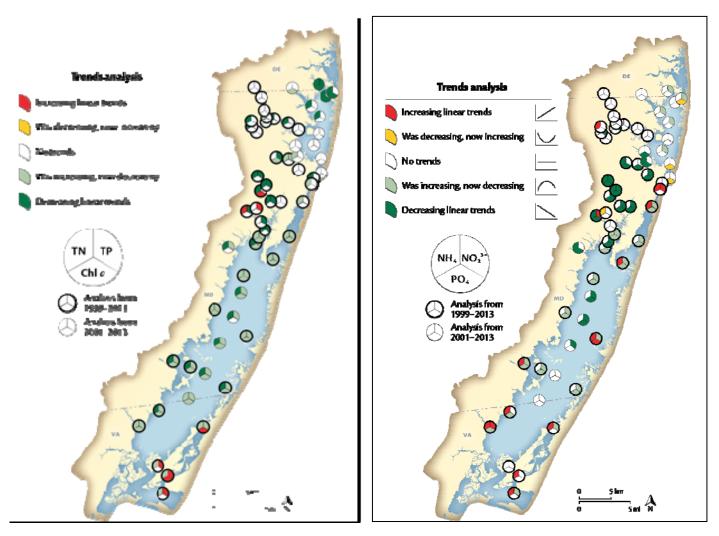

All significant linear trends for TN in Chincoteague Bay were improving and were found mainly in the central portion of the bay and Marshall Creek (ASIS 7, ASIS 9, ASIS 14, ASIS 15, MSL0011, XCM0159, XBM3418, XBM5932, XBM8149) (Table 4.1.13a and Figure 4.1.3). In contrast, all significant TP linear trends were degrading, and were concentrated around the town of Chincoteague (ASIS11, ASIS 12, ASIS 13). Significant inverted non-linear trends for TN were found at all open bay stations, only Marshall Creek (MSL0011) did not show a significant trend. Except for the three stations concentrated around the town of Chincoteague (ASIS 11, ASIS 12, ASIS 12, ASIS 13), which showed no non-linear trends), all of the stations in Chincoteague Bay showed significant inverted non-linear trends for TP (Table 4.1.13b and Figure 4.1.3).

Table 4.1.13a Significant linear trends	
Chincoteague Bay	

Chilleoteague Day								
Area	Station	p value	slope	parameter				
	XCM0159	0.0039	-0.0113	TN				
	XBM5932	0.0014	-0.0112	TN				
	XBM8149	0.0058	-0.0106	TN				
Maryland	ASIS7	0.0002	-0.0097	TN				
	ASIS14	0.0000	-0.0094	TN				
	XBM3418	0.0001	-0.0133	TN				
	ASIS15	0.0001	-0.0067	TN				
Virginia	ASIS9	0.0036	-0.0062	TN				
	ASIS11	0.0001	0.0008	TP				
Virginia	ASIS12	0.0000	0.0009	TP				
	ASIS13	0.0008	0.0006	TP				
	ASIS6	0.0089	0.0017	NH4				
Maryland	ASIS7	0.0034	0.0015	NH4				
	ASIS9	0.0013	0.0025	NH4				
	ASIS8	0.0000	0.0029	NH4				
Virginio	ASIS10	0.0085	0.0021	NH4				
Virginia	ASIS12	0.0023	0.0030	NH4				
	ASIS13	0.0025	0.0022	NH4				
	XCM0159	0.0002	-0.0003	NO23				
Maryland	XBM5932	0.0012	-0.0003	NO23				
	XBM8149	0.0029	-0.0003	NO23				
Mandand	XCM0159	0.0001	-0.0001	PO4				
Maryland	XBM5932	0.0018	-0.0002	PO4				

Table 4.1.13b Significant non-linear trends
Chincoteague Bay

Area	Station	Trend Type	Critical Date	parameter
	XCM1562	inverted U	7-Nov-06	TN
Mondand	ASIS5	inverted U	30Oct2005	TN
Maryland	ASIS6	inverted U	11Apr2005	TN
	XBM1301	inverted U	12-Sep-06	TN
	ASIS8	inverted U	16Dec2006	TN
	ASIS10	inverted U	24Jan2006	TN
Virginia	ASIS11	inverted U	7-Feb-07	TN
	ASIS12	inverted U	27-Aug-06	TN
	ASIS13	inverted U	22-Jul-06	TN
	XCM1562	inverted U	24-Aug-06	TP
	XCM0159	inverted U	22-May-07	TP
	ASIS5	inverted U	10-May-07	TP
	XBM5932	inverted U	11-Mar-07	TP
	ASIS6	inverted U	12-Jan-07	TP
Maryland	XBM8149	inverted U	25-Jun-07	TP
	ASIS7	inverted U	23-Dec-05	TP
	ASIS14	inverted U	5-Nov-05	TP
	XBM3418	inverted U	18-Sep-06	TP
	ASIS15	inverted U	12-Jun-07	TP
	XBM1301	inverted U	7-Jan-07	TP
	ASIS9	inverted U	3-Nov-06	TP
Virginia	ASIS8	inverted U	28-Jan-07	TP
	ASIS10	inverted U	14-Nov-06	TP
	XCM1562	inverted U	1-May-06	NO23
	ASIS5	inverted U	29-Jan-06	NO23
Maryland	ASIS6	inverted U	16-Nov-06	NO23
iviary land	ASIS7	inverted U	11-Aug-07	NO23
	ASIS14	inverted U	3-Oct-06	NO23
	ASIS15	inverted U	10-Jan-07	NO23
Virginia	ASIS8	inverted U	6-Feb-08	NO23
viiginia	ASIS13	inverted U	16-Dec-06	NO23
	XCM1562	inverted U	12-Jul-05	PO4
Maryland	ASIS5	inverted U	16-Feb-08	PO4
iviary rand	ASIS7	inverted U	23-Sep-07	PO4
	ASIS14	inverted U	19-Dec-07	PO4
Virginia	ASIS9	inverted U	8-Nov-07	PO4
virginia	ASIS10	inverted U	13-Jan-08	PO4

Figure 4.1.3. Nutrient trends at fixed DNR and ASIS stations. Trends were based on between 13 and 15 years of data, depending on the station. Significance in linear trends was calculated using the seasonal Kendall's tau statistic, and directionality (improving or degrading) condition for significant trends was determined by linear regression (p = 0.01 level).

Summary

The entire Coastal Bays watershed continues to be stressed by nutrients. The St. Martin River, Newport Bay, tributaries of Isle of Wight Bay, northern Chincoteague Bay, and most of Assawoman Bay remain enriched with nitrogen. In those areas that meet the seagrass threshold for TN, many stations fail the NH₄ threshold, including Sinepuxent Bay and southern Chincoteague Bay. Phosphorous enrichment is nearly ubiquitous, with only four scattered stations meeting the seagrass threshold during the most recent (2011-13) analysis period. TN and TP are better than dissolved inorganic nutrients as indicators of relative nutrient availability in systems known to have high organic inputs (Glibert et al. 2001). Elevated nutrient levels may be impacting seagrass distribution (see Chapter 5.1).

Although areas of the Coastal Bays continue to fail seagrass thresholds for nitrogen, improving total nitrogen trends were found in Assawoman Bay and at many sites in Newport Bay and Chincoteague Bay.

While the status of phosphorous remains poor throughout the bays, trends analyses indicate that concentrations are declining in recent years in the Maryland and northern Virginia portion of Chincoteague Bay but not in other areas. Legacy groundwater is increasingly understood as a source of phosphorous to the Coastal Bays, which may explain persistent failure of the seagrass threshold. It may take decades for high concentrations to decrease sufficiently to meet the threshold, even in the face of best management practices (BMPs) that improve surface water runoff quality. These BMPs should not be abandoned or scaled back because they mitigate further additions of phosphorous to groundwater and surface water. It is important that declines in phosphorous concentrations continue. In contrast, the area near Chincoteague, Virginia exhibits increasing trends, likely linked to outdated sewage treatment and management practices.

Ammonium concentrations exceeded seagrass thresholds between 32-35% of sites and were potentially lethal at some sites. Ammonium concentrations were highest in the Virginia portion of Chincoteague Bay and in tributaries watershed-wide.

Overall, one site in Assawoman Bay and three in Newport Bay overlapped between DNR and MCBP volunteer monitoring program. Results from co-located sites varied. Differences in the frequency of sample collection (monthly vs twice a month) may be a result of volunteers better capturing sporadic events. These comparisons suggest not eliminating any of the volunteer sites.

Combined linear and non-linear trends analysis detected 152 unique significant trends among all parameters and stations (50%). Out of 60 stations there were 42 significant improving trends for TN, 27 for TP, 7 for NH₄, 30 for NO₂₃, and 26 for PO₄ (Figure 4.1.3). There was one significantly degrading trend for TN, 3 for TP, 12 for NH₄, one for NO₂₃, and three for PO₄ (Table 4.1.14) Improving trends in dissolved nutrients may be one driver for improving trends in total nutrients, where both trends coincide. Declining trends in dissolved nutrients may be early warning of undetected problems, where they coincide with improving trends in total nutrients. Most trends were improving; only 20 significant degrading trends were found (7%)

The improving trends in the St. Martin River are encouraging, because it is one of the most impacted segments within the Coastal Bays watershed. If the degrading trend in NH_4 at Birch Branch continues, it may have a negative impact on the improving trend in TN. Phosphorus and ammonium levels indicate large scale nutrient issues that need to be addressed. Ammonium toxicity effects on Z. marina are expected to be strongest in the fall when irradiance decreases, temperature is still high, and ambient ammonium concentrations rise. Therefore, a different temporal average for ammonium should be investigated to determine potential toxicity impacts.

Table 14.1.14 Summary of significant nutrient trends in each subwatershed (linear and nonlinear). Green columns indicate the number of improving trends while the pine columns are degrading trends.

TN	ТР									NH4				
Area Linear			Non-Linear Area			Lin	ear	Non-	Linear	Area	Lin	ear	Non-	Linear
Assawoman Bay	5	0	0	0	Assawoman Bay	1	0	0	0	Assawoman Bay	0	0	0	0
St. Martin River	4	0	1	0	St. Martin River	0	0	0	0	St. Martin River	0	1	0	0
Isle of Wight Bay	0	0	2	0	Isle of Wight Bay	1	0	1	0	Isle of Wight Bay	2	0	0	0
Sinepuxent Bay	1	0	4	0	Sinepuxent Bay	0	0	2	0	Sinepuxent Bay	0	3	0	0
Newport Bay	7	1	1	0	Newport Bay	5	0	3	0	Newport Bay	4	0	1	1
Chincoteague Bay	8	0	9	0	Chincoteague Bay	0	3	14	0	Chincoteague Bay	0	7	0	0

NO23				
Area	Linear		Non-Linear	
Assawoman Bay	0	0	4	0
St. Martin River	2	0	0	0
Isle of Wight Bay	1	0	1	0
Sinepuxent Bay	0	0	3	0
Newport Bay	6	1	2	0
Chincoteague Bay	3	0	8	0

PO4				
Area	Linear		Non-Linear	
Assawoman Bay	0	0	0	1
St. Martin River	0	0	0	0
Isle of Wight Bay	5	0	0	2
Sinepuxent Bay	0	0	3	0
Newport Bay	8	0	2	0
Chincoteague Bay	2	0	6	0

References

Ebersole, E., M. Lane, M. Olson, E. Perry, and W. Romano. 2002. Assumptions and procedures for calculating water quality status and trends in tidal waters of the Chesapeake Bay and its tributaries: a cumulative history. Report prepared for Chesapeake Bay Program, Tidal Monitoring and Analysis Workgroup http://mddnr.chesapeakebay.net/eyesonthebay/documents/stat_trend_hist.pdf

Glibert, P.M., R. Magnien, M.W. Lomas, J. Alexander, C. Fan, E. Haramoto, M. Trice, and T.M. Kana. 2001. Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: Comparison of 1997, 1998, and 1999 events. Estuaries 24: 875-883.

Hirsch, R.M., J.R. Slack, and R.A. Smith. 1982. Techniques of trend analysis for monthly water quality data. Water Resources Research 18(1): 107-121.

Stevenson, J.C., L.W. Staver, and K.W. Staver. 1993. Water quality associated with survival of submersed aquatic vegetation along an estuarine gradient. Estuaries 16(2): 346-361.

Van Belle, G. and J.P. Hughes. 1984. Nonparametric tests for trend in water quality. Water Resources Research 20(1): 127-136.

van der Heide, T; A. J. P. Smolders; B. G. A. Rijkens; E. H. van Nes; M. M. van Katwijk; J. G. M. Roelofs . 2008. Toxicity of reduced nitrogen in eelgrass (*Zostera marina*) is highly dependent on shoot density and pH. Oecologia: 158:411–419.

van Katwijk, M.M.; L. H.T. Vergeer; G. H. W. Schmitz and J. G. M. Roelofs. 1997. Ammonium toxicity in eelgrass *Zostera marina*. Mar Ecol Prog Ser(157)159-173.

Wazniak, C.E. 1999. Eutrophication monitoring plan. Appendix A of the Maryland Coastal Bays Comprehensive Conservation Management Plan. Maryland Coastal Bays Program, Berlin, MD.

Wazniak, C. E., M. R. Hall, T. J. B. Carruthers, R. Sturgis, W. C. Dennison, R. J. Orth. 2007. Assessing eutrophication in a mid-Atlantic lagoon system, USA: linking water quality status and trends to living resources. Ecological Applications 07/2007; 17(sp5-5):S64-S78.