2017 Inventory of Renewable Energy Generators Eligible for the Maryland RPS

KEVIN PORTER AND STACY SHERWOOD, EXETER ASSOCIATES INC. MARYLAND RPS WORKING GROUP WEBINAR APRIL 26, 2018

Overview

- History of the Inventory Report
- RPS Requirements and changes
- Renewable Energy Market in Maryland
- Report Methodology
- Report Sources
- Overall Results
- Non-carve-out Tier 1 results and projected capacity
- Solar carve-out Tier 1 results and projected capacity
- Alternative Scenarios
- Summary

History

2006

2011

2017

First Inventory Report
Report concluded that Tier 1 and Tier 2 resources would be sufficient through 2011 and 2012, respectively.
Projected that PJM-wide renewables would experience increased competition in 2011 and 2012.

Second Inventory Report
Report concluded that meeting solar generation requirements through 2022 would be difficult.
Projected that additional Tier 1 investment was needed to meet the non-carve-out Tier 1 requirement in PJM.

•Third and current Inventory Report (Draft)

•The Report concluded that there will likely be a shortfall of Tier 1 resources within PJM to satisfy all of RPS policies in states throughout PJM, including voluntary RPS policies.

• Projected there is sufficient resources within Maryland to satisfy the Maryland solar carve-out; as well as sufficient solar in PJM states with a solar carve-out.

Maryland RPS Requirements by Year

RPS updates since 2011 Inventory Report:

- Tier 1 requirement increased to 25% by 2020
- RPS Solar carve-out increased to 2.5% by 2020
- Offshore wind carve-out of Tier 1 up to 2.5% of the Tier 1 requirement.
- Solar water-heating, thermal energy associated with biomass systems, and geothermal heating and cooling systems were added at Tier 1 resources.

		Solar	Offshore Wind	
Year	Tier 1 Total	(subset Tier 1) ^[a]	(subset Tier 1) ^[b]	Tier 2 Total ^[c]
2006	1%	0%	0%	2.5%
2007	1	0	0	2.5
2008	2.005	0.005	0	2.5
2009	2.01	0.01	0	2.5
2010	3.025	0.025	0	2.5
2011	5	0.05	0	2.5
2012	6.5	0.1	0	2.5
2013	8.2	0.25	0	2.5
2014	10.3	0.35	0	2.5
2015	10.5	0.5	0	2.5
2016	12.7	0.7	0	2.5
2017	13.1	1.15	0	2.5
2018	15.8	1.5	0	2.5
2019	20.4	1.95	0	
2020	25	2.5	0	
2021 ^[d]	25	2.5	~1.33	
2022	25	2.5	~1.33	
2023+	25	2.5	~2.0	
	amant hagan in car			

Maryland RPS - Percentage of Renewable Energy Required

^[a] Solar requirement began in compliance year 2008.

^[b] The offshore wind carve-out by law could be a maximum of 2.5 percent beginning in 2017; however, only the approved ORECs have been included here. Other states in PJM do not have an equivalent category.

^[c] Tier 2 requirement sunsets at the end of compliance year 2018.


^[d] According to Maryland PSC Order No. 88192, Table 2, "Offshore Wind Component of the RPS Obligation for Purchasers of ORECs." (The percentage fluctuates annually because the ORECs are based on MWh and energy sales every year.)

Major Changes to the Renewable Energy Market in Maryland Since the Last Report

- Federal incentives (Production Tax Credit and Investment Tax Credit) were implemented and extended until 2022, although actual levels of both tax credits decline each year until their expiration.
- The Maryland PSC authorized the provision of offshore renewable energy credits (ORECs) to two Maryland offshore wind projects slates to come online in 2021 and 2022.
- The costs of solar PV decreased by about 75 percent since 2010.
- Renewable energy credit (REC) and Solar REC (SREC) prices have declined.
- A three-year Community Solar Pilot for 194 MW launched in 2017.

Report Methodology

- Reviewed potential to satisfy Maryland's RPS requirements from 2018 through 2030 as the requirements are held constant after the year 2020.
- Analyzed current RPS requirements in PJM, encompassing eight PJM states and DC with mandatory RPS requirements, as well as two PJM states with voluntary RPS targets.
- Aligned PJM states' RPS resources to match with Maryland's Tiers to evaluate competition for resources.
- •Applicable generation was limited to resources categorized as Maryland-certified in PJM Generator Attributes Tracking System (GATS).
- Considered number of projects in the PJM Interconnection Queue against historical estimated inservice rates.
- Reviewed the capacity and number of certified renewable energy generating facilities located within PJM's footprint only. (While this report only considered facilities within PJM to satisfy the RPS requirements, generation outside of PJM may be used to fulfill non-carve-out Tier 1 requirements, such as wind facilities in the Midwest or hydro facilities in New York.)

PJM States And RPS Policy

Report Sources

Primary data source – PJM GATS, specifically nameplate capacity for each facility.

- Complementary data source U.S. Energy Information Agency (EIA) Form EIA-860M.
- Capacity factors assigned to each technology based on a variety of sources.
- •Current and past generation were based on the historical GATS capacity data using the designated capacity factors.
- Retail sales projections for Maryland were based on the PSC Ten-Year Plan and utility-specific growth rates in the PJM 2017 Load Forecast. The retail sale projections were lowered by 1.9 percent to account for the exemption of industrial process load.
- •For the remaining states and the District of Columbia (DC), EIA-826 and MISO and PJM Load Forecasts were used.
- RPS percentages were then applied to determine future requirements for RPS-eligible resources.

Results of the 2017 Renewable Inventory Report

There is sufficient generation in PJM to satisfy Maryland's non-carve-out Tier 1 generation requirements; however, when compared with other PJM states' non-carve-out Tier 1 generation RPS requirements and voluntary goals, there is insufficient generation.

Competition for non-carve-out Tier 1 resources within PJM is expected to increase as a result of the projected deficit.

There is sufficient in-state solar resources to exceed the State's solar carve-out requirement annually from 2018 through the end of the study period (2030). The projected solar generation within PJM is expected to satisfy all PJM states' solar carve-outs.

In Maryland, Tier 2 expires at the conclusion of 2018. There is more than sufficient generation available in Maryland and in PJM for Tier 2 compliance.

2017 Report Projections

Maryland		2017 GWh	2020 GWh (Projection)
	Total Electric	60,788	60,702
Energy/RPS Requirements	Tier 1 Solar Carve-out	699	1,518
	Tier 1 Non-carve-out	8,784	13,658
		-	ed to Meet RPS with In-State urces
Estimated Generation	Tier 1 Solar Carve-out	1,367	4%
	Tier 1 Non-carve-out	1,473	N/A
PJM Region			
	Total Electric	786,962	797,014
Energy/RPS Requirements	Tier 1 Solar Carve-out	4,694	6,621
	Tier 1 Non-carve-out	56,644	79,325
		Annual Growth Rate Requ	uired to Meet Current RPS
Estimated Generation	Tier 1 Solar Carve-out	7,182	N/A
	Tier 1 Non-carve-out	25,625	46%
			10

Non-carve-out Tier 1 RPS Requirements in PJM

- To meet the RPS requirements in PJM, renewable energy generation in PJM would need an annual growth rate of 46% from 2017 to 2020.
- The non-carve out Tier 1 projected annual growth rate in PJM is currently 3%.
- The projected shortfall can be partially met by solar generation used for Tier 1 and offshore wind, both in Maryland and in other PJM states.

PJM Non-carve-out Tier 1 Generation Requirement Compared to Projected Non-carve-out Tier 1 Generation (2018-2030) (GWH)

Non-Carve-Out Tier 1 Projected Projects in PJM by Technology 2018-2030

Estimated Capacity (MW)

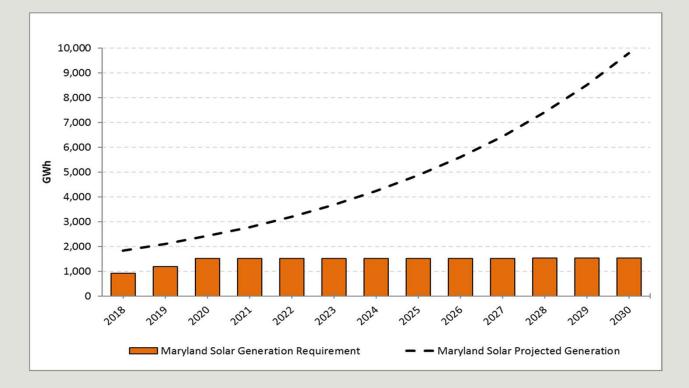
Year	Wind	Offshore Wind	Hydro	Biomass	Other ^[a]	TOTAL	
2018	7,264		265	151	1,517	9,196	
2019	7,340		281	228	1,517	9,366	
2020	7,417		297	304	1,517	9,536	
2021	7,494	248	313	381	1,517	9,953	
2022	7,571	248	328	458	1,517	10,123	
2023	7,648	368	344	535	1,517	10,412	
2024	7,725	368	360	612	1,517	10,582	
2025	7,802	368	376	689	1,517	10,751	
2026	7,879	368	392	766	1,517	10,921	
2027	7,955	368	407	843	1,517	11,091	
2028	8,032	368	423	920	1,517	11,260	
2029	8,109	368	439	997	1,517	11,430	
2030	8,186	368	455	1,073	1,517	11,599	
Average Annual Growth Rates							
2018-2024	1.03%		5.24%	26.27%	0.00%	2.37%	
2024-2030	0.97%	0.00%	3.98%	9.81%	0.00%	1.54%	
2018-2030	 ack liquor, geotl		4.61%	17.75%	0.00%	1.95%	

not expected to experience market growth.

Estimated Generation (GWh)

Energy Source	Wind	Offshore Wind	Hydro	Biomass	Other ^[a]	TOTAL		
2018	16,543		1,045	1,108	7,840	26,538		
2019	16,718		1,108	1,674	7,840	27,341		
2020	16,894		1,170	2,240	7,840	28,144		
2021	17,069	914	1,232	2,806	7,840	29,861		
2022	17,244	914	1,295	3,372	7,840	30,664		
2023	17,419	1,369	1,357	3,938	7,840	31,923		
2024	17,594	1,369	1,419	4,503	7,840	32,726		
2025	17,769	1,369	1,481	5,069	7,840	33,529		
2026	17,944	1,369	1,544	5,635	7,840	34,333		
2027	18,119	1,369	1,606	6,201	7,840	35,136		
2028	18,294	1,369	1,668	6,767	7,840	35,939		
2029	18,469	1,369	1,731	7,333	7,840	36,742		
2030	18,644	1,369	1,793	7,899	7,840	37,546		
Average Annual Growth Rates								
2018-2024	1.03%		5.24%	26.27%	0.00%	3.55%		
2024-2030	0.97%	0.00%	3.98%	9.81%	0.00%	2.32%		
2018-2030			4.61%	17.75%	0.00%	2.93%		

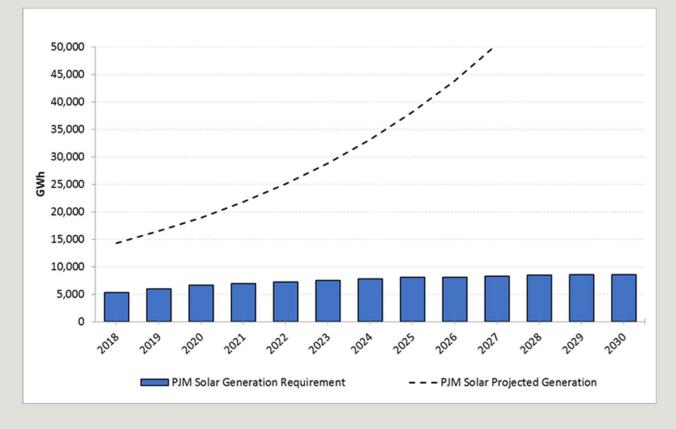
^[a] Includes black liquor, geothermal, methane, and waste-to-energy, which are based on PJM GATS and no expected to experience market growth.


Non-carve-out Tier 1 RPS Requirements in PJM Compared to Projected PJM Renewable Energy Generation (2018-2030) (GWh)

	Generation	Projected					
Year	Requirement	Generation	Difference				
2018	64,072	26,538	(37,535)				
2019	73,019	27,341	(45,678)				
2020	79,325	28,144	(51,181)				
2021	83,998	29,861	(54,137)				
2022	92,820	30,664	(62,155)				
2023	95,559	31,923	(63,636)				
2024	99,215	32,726	(66,489)				
2025	106,964	33,529	(73,434)				
2026	109,098	34,333	(74,765)				
2027	109,592	35,136	(74,456)				
2028	110,214	35,939	(74,275)				
2029	110,641	36,742	(73,899)				
2030	111,183	37,546	(73,637)				
Average Annual Growth Rates							
2018-2024	7.56%	3.55%					
2024-2030	1.92%	2.93%					
2018-2030	4.70%	2.32%					

Maryland Solar Carve-out

- Maryland is expected to significantly exceed the solar generation requirements.
- Maryland is projected to be in excess of its solar carve-out requirement by 12,330 GWh by 2020 and by 68,087 GWh by 2030.


PJM Solar Carve-out Generation Requirement Compared to Projected Solar Carve-out Generation (2018-2030) (GWH)

PJM Solar Carveout

 All of the PJM states with solar carve-outs are expected to exceed their respective solar generation requirements as well.

PJM Solar Carve-out Generation Requirement Compared to Projected Solar Carve-out Generation (2018-2030) (GWH)

Potential Solar Generation to Meet Deficit of Non-carve-out Tier 1 Generation Requirements in PJM (2018-2030) (GWh)

Year	Deficit	Excess PJM Solar	Remaining Deficit
2018	(37,535)	9,006	(28,528)
2019	(45,678)	10,538	(35,140)
2020	(51,181)	12,330	(38,852)
2021	(54,137)	14,819	(39,319)
2022	(62,155)	17,803	(44,353)
2023	(63,636)	21,275	(42,361)
2024	(66,489)	25,329	(41,160)
2025	(73,434)	30,024	(43,411)
2026	(74,765)	35,751	(39,014)
2027	(74,456)	42,158	(32,298)
2028	(74,275)	49,544	(24,732)
2029	(73,899)	58,135	(15,764)
2030	(73,637)	68,087	(5,550)

Alternative Scenario – What if Black Liquor is Disqualified?

•All else equal, the elimination of black liquor from the Maryland RPS would have adverse impacts on PJM states and D.C. for the following reasons:

- In 2016, black liquor generation was used to satisfy 23% of the non-carve-out Tier 1 compliance in Maryland.
- Since other PJM states with an RPS do not categorize black liquor as a Tier 1 resource, the "pool" of eligible Tier 1 generation in PJM would decrease by the projected amount of black liquor that would have been used to meet the Maryland RPS, which is approximately 4,240 GWh.
- Consequently, the decrease in the "pool" of eligible resources would increase the demand for Tier 1 RECs. PJM states with an RPS would need to, in aggregate, increase imports into PJM to meet their collective non-carve-out Tier 1 requirements.
- Elimination of any other eligible Tier 1 resource would not have a significant impact because there would be no reduction to the overall generation "pool."
 - For example, if small hydro was no longer eligible in Maryland, another state where small hydro is eligible could purchase the RECs from small hydro generation that Maryland formerly utilized to satisfy its RPS. Maryland could then purchase RECs from another eligible technology that the other state no longer need.

Alternative Scenario – 50% Maryland RPS by 2030

- An increase in the Maryland RPS requirement will put upward pressure on Maryland REC prices, making it more economic to apply RECs from other states to Maryland.
- An increase in Maryland REC prices will in turn increase REC prices in other PJM states with an RPS. With an overall increase, renewable energy projects that may have been unprofitable at lower REC prices may become profitable, resulting in an increase in the amount of RECs in the market.

Scenario for 50 Percent Maryland RPS Requirements by 2030, by Percentages

Year	Tier 1 Solar	ORECs	Non-carve-out Tier 1	TOTAL
2018	1.77%	0.00%	16.51%	18.28%
2019	2.04	0.00	18.72	20.76
2020	2.31	1.33	20.93	24.57
2021	2.58	1.33	23.14	27.04
2022	2.85	1.33	25.35	29.52
2023	3.12	1.98	27.56	32.65
2024	3.38	1.98	29.76	35.13
2025	3.65	1.98	31.97	37.61
2026	3.92	1.98	34.18	40.09
2027	4.19	1.98	36.39	42.56
2028	4.46	1.98	38.60	45.04
2029	4.73	1.98	40.81	47.52
2030	5.00	1.98	43.02	50.00

Alternative Scenario – 50% Maryland RPS by 2030 Impact on Non-carve-out Tier 1

- When evaluated only for Maryland, there is sufficient resources within PJM to comply with Maryland's non-carve-out Tier 1 requirement.
- When considering all PJM RPS requirements, there would be insufficient resources within PJM to satisfy non-carve out Tier 1 requirements which would result in substational competition for those resources.

Tier 1 Non-carve-out RPS Requirements in PJM Compared to Maryland Current and 50% RPS Requirements by 2030 (GWh)

	Difference in			Difference
	Maryland	PJM Tier 1	PJM Tier 1	Between PJM
	Tier 1 Non-	Non-carve-	Non-carve-	Generation
Year	carve-out	out	out	Requirement
	Current RPS	Generation	Projected	and PJM
	and 50% RPS	Requirement	Generation	Projected
	Requirement			Generation
2018	(177)	64,072	26,538	(37,358)
2019	(1,356)	73,019	27,341	(44,322)
2020	(954)	79,325	28,144	(50,227)
2021	1,192	83,998	29,861	(55,329)
2022	2,531	92,820	30,664	(64,686)
2023	4,263	95,559	31,923	(67,899)
2024	5,614	99,215	32,726	(72,103)
2025	6,953	106,964	33,529	(80,388)
2026	8,305	109,098	34,333	(83,070)
2027	9,660	109,592	35,136	(84,116)
2028	11,034	110,214	35,939	(85,310)
2029	12,389	110,641	36,742	(86,288)
2030	13,747	111,183	37,546	(87,384)

Alternative Scenario – 50% Maryland RPS by 2030 with 5% Solar Carve-out

- Maryland in-state solar energy generation is projected to exceed a 5% solar generation requirement.
- Increasing the solar requirement would reduce the available solar generation that could be used to meet the non-carve-out Tier 1 deficit projected through 2030.

5% Maryland RPS Requirements for Solar Compared to Projected Maryland Solar Energy Generation (2018-2030) (GWh)

	5% Solar Carve-	Projected					
Year	out Generation	Maryland Solar	Difference				
	Requirement	Generation					
2018	1,076	1,830	753				
2019	1,239	2,104	865				
2020	1,401	2,420	1,019				
2021	1,562	2,782	1,221				
2022	1,725	3,200	1,475				
2023	1,888	3,680	1,792				
2024	2,055	4,232	2,177				
2025	2,218	4,867	2,648				
2026	2,385	5,597	3,212				
2027	2,552	6,436	3,884				
2028	2,723	7,401	4,679				
2029	2,888	8,512	5,623				
2030	3,055	9,788	6,733				
Average Annual Growth Rates							
2018-2024	11.39%	15.00%					
2024-2030	6.83%	15.00%					
2018-2030	9.09%	15.00%					

Summary

- There are sufficient renewable resources, current and projected, to meet the Tier 2 and Tier 1 solar carve-out requirements in the Maryland RPS.
- In contrast, there is a projected shortfall of Tier 1 RECs to meet future Maryland RPS requirements.
- That projected shortfall will put upward pressure on Tier 1 REC prices in Maryland and in other PJM states.
- Higher Tier 1 REC prices will encourage more renewable energy projects, changes in REC sales among states based on differentials in REC prices, and increased imports of RECs into PJM.
- Market dynamics, therefore, can be anticipated to address much, if not all, of the projected shortfalls in non-carve-out Tier 1 resources.

Extra Slides

Maryland Tier 1 and Tier 2 Eligible Resources

Tier 1 Eligible Facilities

Solar PV and solar thermal systems (located within Maryland for the carve-out) that produce electric power, and solar water-heating systems constructed after June 1, 2011

Land-based and offshore wind

Qualifying biomass^[a]

Methane from the anaerobic decomposition of organic materials in a landfill or a wastewater treatment plant

Geothermal including energy generated through geothermal exchange from or thermal energy avoided by groundwater or a shallow ground source

Ocean including energy from waves, tides, currents, and thermal differences

Fuel cells powered by methane or biomass

Hydroelectric plants under 30 MW licensed by FERC or exempt from licensing

Poultry litter-to-energy within Maryland

Waste-to-energy (including blast furnace gas and refuse-derived fuels) within Maryland

Tier 2 Eligible Facilities

Hydroelectric plants other than pumped storage hydropower

Renewable Energy Generating Facilities in PJM Certified as Eligible for Maryland RPS Compliance (as of EOY 2017)

	Tier	1	
State	No. of Solar Carve-out Facilities	No. of Non-carve- out Facilities	Tier 2 No. of Facilities
Maryland	54,973	101	1
Delaware	4,511	4	
District of Columbia	3,352		
Illinois	832	38	
Indiana	49	11	
Kentucky	122	6	
Michigan	7	6	
New Jersey	80,002	6	
North Carolina	86	3	2
Ohio	2,343	22	1
Pennsylvania	16,275	39	3
Tennessee	4	1	
Virginia	2,198	36	1
West Virginia	405	9	3
TOTAL:	165,159	282	11

^[a] There is no column for the offshore wind carve-out, as there are no operational facilities as of December 31, 2017. The facilities in other states are categorized by Maryland Tier 1 and Tier 2 eligibility, as further explained in Section III.

Existing Generation Capacity and Number of Installed Units in PJM Certified as Tier 1 Under the Maryland RPS (as of EOY 2017)

					Tier 1 Facili	ty Category				
	MW/					Qualifyin	Waste-			
	No. of			Hydro-	Methane [[]	g	to-	Black	Geo-	
State	Units	Solar	Wind	electric ^[a]	b]	Biomass	Energy	Liquor	thermal	TOTA
	MW	975	180	20	23	4	258	30	2	1,492
Maryland	No.	54,973	7	2	10	2	4	1	75	55,074
	MW	97			9					106
Delaware	No.	4,511			4					4,515
District of	MW	45								45
Columbia	No.	3,352								3,352
	MW	55	2,719	20	129					2,924
Illinois	No.	832	17	3	18					870
	MW	11	1,701	8						1,721
Indiana	No.	49	9	2						60
	MW	12			16	5				33
Kentucky	No.	122			5	1				128
	MW	5		15	3					23
Michigan	No.	7		5	1					13
	MW	2,211	8	11	50					2,280
New Jersey	No.	80,002	1	1	4					80,008
North	MW	784	208					124		1,116
Carolina	No.	86	1					2		89
	MW	172	418		71			51		713
Ohio	No.	2,343	6		15			1		2,365
	MW	321	997	95	144			83		1,640
Pennsylvania	No.	16,275	13	7	17			2		16,314
	MW	0						49		49
Tennessee	No.	4						1		5
	MW	431		29	111	140	124	239		1,074
Virginia	No.	2,198		13	16	2	1	4		2,234
	MW	4	652	58						714
West Virginia	No.	405	5	4						414
TOTAL	MW	5,124	6,884	257	557	149	382	576	2	13,930
TOTAL:	No.	165,159	59	37	90	5	5	11	75	165,44

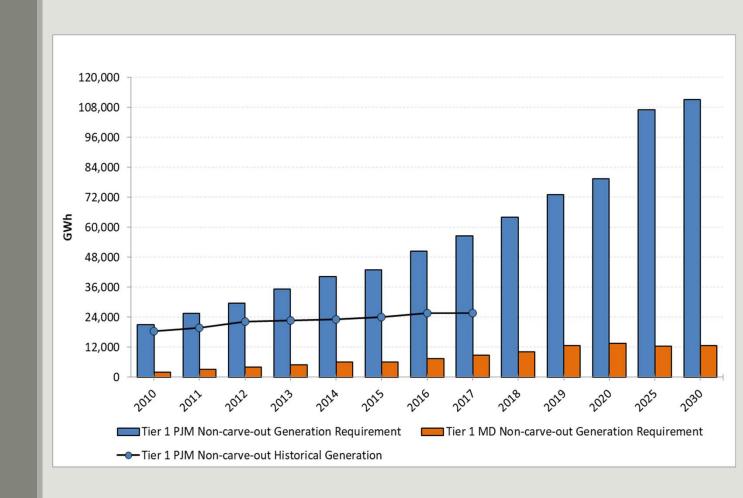
Note: Totals may not equal sum of components due to independent rounding.

Existing Generation Capacity and Number of Installed Units in PJM Certified as Tier 2 Under the Maryland RPS (as of EOY 2017)

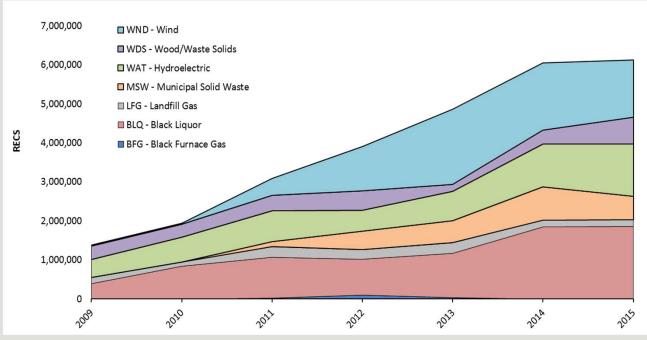
		Tier 2	
		<u>Facility</u>	
	MW/	<u>Category</u>	
	No. of Units	Hydroelectric ^[a]	TOTAL
Manuland	MW	531	531
Maryland	No.	1	1
North Carolina	MW	278	278
North Carolina	No.	2	2
	MW	47	47
Ohio	No.	1	1
Deveneral	MW	501	501
Pennsylvania	No.	3	3
Minainia	MW	8	8
Virginia	No.	1	1
	MW	159	159
West Virginia	No.	3	3
TOTAL	MW	1,525	1,525
TOTAL:	No.	11	11

Note: PJM states with no Tier 2 eligible facilities certified in Maryland under Tier 2 include: Delaware, Illinois, Indiana, Kentucky, Michigan, New Jersey, and Tennessee; the District of Columbia also has no Tier 2 eligible facilities.

^[a] Hydroelectric for Tier 2 includes all hydroelectric facilities (other than those less than 30 MW) that were constructed at a dam that was in operation prior to 2004.

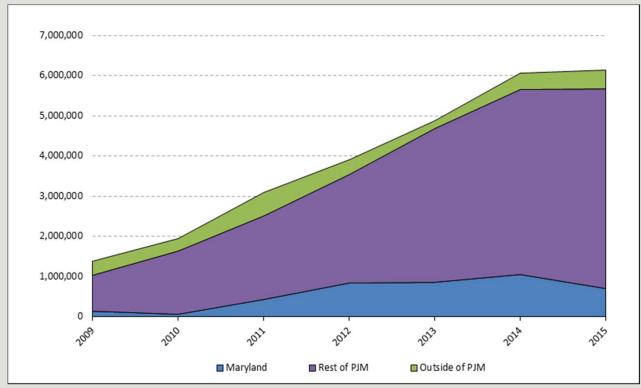

Electric Generating Capacity Factors Estimated for PJM

	PJM Capacity
Generator Type	Factor
Biomass	84%
Black Liquor	84
Geothermal	80
Hydroelectric ^[a]	45
Methane (mixed fuel)	55
Solar PV	16
Solar Thermal	25
Waste-to-Energy	27
Wind – Land-based	26
Wind – Offshore ^[b]	39

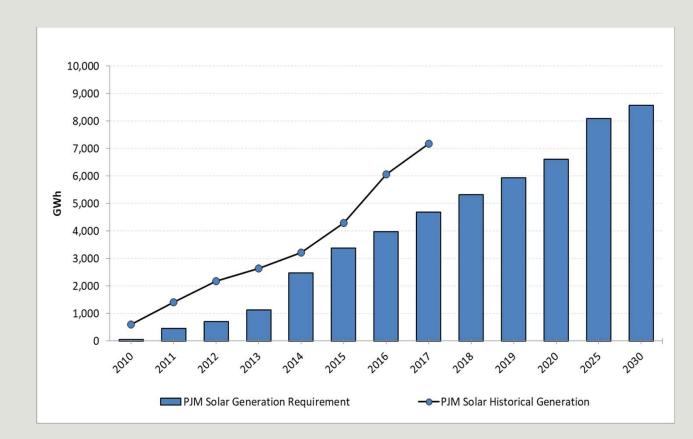

^[a] Tier 1 Hydroelectric (i.e., <30 MW).

^[b] This was not sued for the two Maryland-specific projects; those projections were based directly (read hard-entered) on Maryland PSC Order No. 88192.

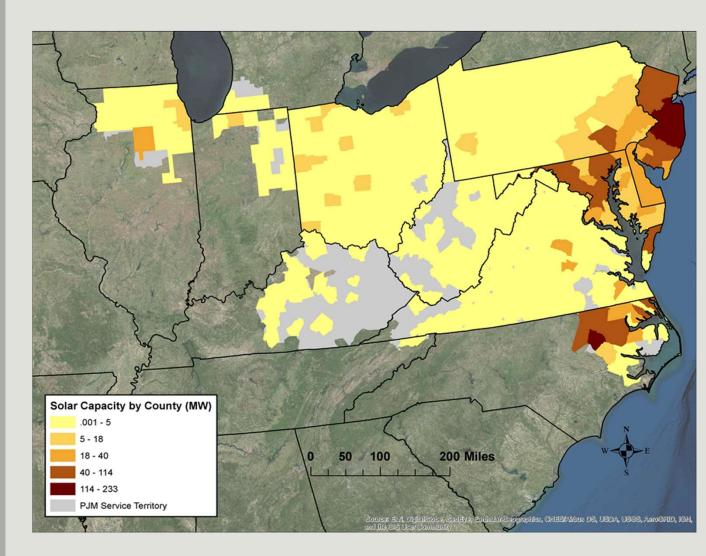
Non-carve-out Tier 1 Generation Required by the RPS in Maryland and PJM



RECs Retired for Non-carve-out Tier 1 RPS Compliance by Resource in Maryland (2009-2015)


Source: Maryland Public Service Commission

RECs Retired for Non-carve-out Tier 1 RPS Compliance in Maryland by Location (2009-2015)



Source: Maryland Public Service Commission

Solar Carve-out Requirement in PJM Compared to PJM Solar Historical Generation

Solar Capacity in PJM (2017)

Estimated Capacity and Generation of Total Solar Projects in Maryland (2018-2030)

	Utility-scale Solar	Utility-scale Solar
	Capacity	Generation
Year	(MW)	(GWh)
2018	1,305	1,830
2019	1,501	2,104
2020	1,726	2,420
2021	1,985	2,782
2022	2,283	3,200
2023	2,625	3,680
2024	3,019	4,232
2025	3,472	4,867
2026	3,993	5,597
2027	4,592	6,436
2028	5,281	7,401
2029	6,073	8,512
2030	6,984	9,788