

Land Conservation & Chesapeake Restoration

Peter Claggett Research Geographer, U.S. Geological Survey Coordinator, CBP Land Use Workgroup

> May 17, 2018 Maryland Land Conservation Conference Linthicum Heights, Maryland

Chesapeake Bay Watershed PopulationTrends

≊USGS

Crediting Land Conservation and Planning in the Bay TMDL

Reducing non-point sources of pollution to the Bay requires:

- 1. Changing land cover conditions; or
- 2. Changing land management; or
- 3. Installing engineered solutions to reduce pollution.

Land conservation and land use planning can improve water quality by:

- 1. Installing, monitoring, and maintaining Best Management Practices (BMPs) on conserved lands (e.g., planting trees in the riparian zone);
- 2. Reducing the future conversion of land to more polluting land uses e.g., placing an easement on land that would otherwise be developed.
- 3. Soliciting restoration investments on conserved lands that are strategically located to intercept pollutants before they enter streams and waterways (e.g., precision conservation).

Crediting Land Conservation and Planning in the Bay TMDL

Reducing non-point sources of pollution to the Bay requires:

- 1. Changing land cover conditions; or
- 2. Changing land management; or
- 3. Installing engineered solutions to reduce pollution.

Land conservation and land use planning can improve water quality by:

- 1. Installing, monitoring, and maintaining Best Management Practices (BMPs) on conserved lands (e.g., planting trees in the riparian zone);
- 2. Reducing the future conversion of land to more polluting land uses e.g., placing an easement on land that would otherwise be developed.
- 3. Soliciting restoration investments on conserved lands that are strategically located to intercept pollutants before they enter streams and waterways (e.g., precision conservation).

Chesapeake Bay Land Change Model v3a

Partnership's Chesapeake Bay Land Change Model

Assessing Uncertainty at Local Scales

Assessing Uncertainty at Local Scales

Every county is simulated 101 times for each scenario and target year, i.e., 2025.

Average of simulations by land-river segment = future development

Relative Standard Deviation = estimate of uncertainty

Land Change Model Outputs

- Impervious surface and turf grass expansion
- Forest conversion to development
- Farmland conversion to development
- Future population on sewer and septic

Conservation Effects on Future Land Use (hypothetical example)

Land Area = 25 cells

9 cells developed 8 cells forest 8 cells farmland

No Conservation Scenario

Greenfield Capacity = 46 units

22 units on forests 24 units on farmland

| 2 units |
|---------|---------|---------|---------|---------|
| 4 units | 4 units | 4 units | 4 units | 2 units |
| | | | 4 units | 2 units |
| | | | 4 units | 2 units |
| | | | 4 units | 2 units |

No Conservation Scenario

Future Demand for Growth = 12 units

New Development = 3-6 cells

| 2 units |
|---------|---------|---------|---------|---------|
| 4 units | 4 units | 4 units | 4 units | 2 units |
| | | | 4 units | 2 units |
| | | | 4 units | 2 units |
| | | | 4 units | 2 units |

Iteration #1 (of 101)

Units = housing units

Conservation Scenario #1: conserve all low-density lands

Conservation Scenario #1

Greenfield Capacity = 28 units

12 units remaining on forest lands 16 units remaining on farmland

18 units of reduced capacity

| 2 units |
|--------------------|--------------------|--------------------|--------------------|--------------------|
| 4 units | 4 units | 4 units | 4 units | 2 units |
| | | | 4 units | 2 units |
| | | | 4 units | 2 units |
| | | | 4 units | 2 units |

Conservation Scenario #1

Future Demand for Growth = 12 units

Development = 3 cells

Avoided development = 1-3 cells

Iteration #1 (of 101)

Conservation Scenario #2: reduce capacity below demand

Conservation Scenario #2

Greenfield Capacity = 8 units

No units remaining on forest lands 8 units remaining on farmland

38 units of reduced capacity

| 2 units |
|--------------------|--------------------|--------------------|--------------------|--------------------|
| 4 units | 4 units | 4 units | 4 units | 2 units |
| | | | 4 units | 2 units |
| | | | 4 units | 2 units |
| | | | 4 units | 2 units |

Conservation Scenario #2

Future Demand for Growth = 12 units

Development = 2 cells

Avoided development = 2-4 cells

Crediting Land Conservation and Planning in the Bay TMDL

2025 Land Use (Conservation & Planning Scenario)

2025 Land Use (Mapped from Aerial Imagery)

Difference = credit afforded to all actions in the Conservation & Planning scenario

- Estimated credit based on modelled contribution towards meeting the pollution reduction goals established for each state, state-basin, or county (scale may vary by state).
- Actual credit based on monitored changes in land use and reported BMPs.

Chesapeake Bay Future Scenarios

Historic Trends:

Continuation of historic development patterns and constraints as existed over the 2000's. Includes the best available regional and local data representing current conditions.

Current Zoning:

Same as Historic Trends with the addition of local zoning, increased infill rates (MD counties), and expanded sewer service areas (Jefferson and Berkeley Counties, WV) to reflect current constraints on new development and reported rates of growth on septic. The Chesapeake Bay Program Partners adopted this scenario as the representing the most probable conditions in 2025 and therefore serves as a baseline for evaluating the effects of land use planning and land conservation BMPs.

"Conservation Plus" Family of Scenarios

The "Conservation Plus" family of scenarios represents a variety of land conservation, land use planning, and policy actions that will directly or indirectly affect future patterns of development.

Three thematic scenarios emerged from the list of plausible actions that are of interest to CBP jurisdictions and can be simulated consistently throughout the Chesapeake Bay watershed:

- 1. Forest Conservation
- 2. Growth Management
- 3. Agriculture and Soil Conservation

Alternative Future Thematic Scenarios

Forest Conservation (with or without zoning):

Organizations and governments proactively pursuing a variety of actions to conserve forests and wetlands which provide the greatest benefits to wildlife, human safety, and water quality. Example priority areas include riparian zones, shorelines, large contiguous forest tracts, and other high-priority forest conservation areas.

Growth Management (with or without zoning):

Organizations and governments proactively pursuing a variety of actions to encourage growth in areas with supporting infrastructure. Example priority areas include undeveloped or underdeveloped areas with adequate existing roads, wastewater, and water supply infrastructure.

Agriculture and Soil Conservation (with or without zoning):

Organizations and governments proactively pursuing a variety of actions to conserve farmland and productive soils. Example priority areas include agricultural districts, prime farmland, farmland of state importance, floodplains, and other high-priority farmland conservation areas.

Chesapeake Bay Watershed Scenario Elements

- Conserve riparian zones (default width = 30m)
- Conserve wetlands (NWI, State Designated Wetlands, and Potential Conservable Wetlands (PA only))
- Conserve all lands subject to inundation due to sea level rise (default = 1m rise by the year 2100)
- Conserve all lands surrounding National Wildlife Refuges (default = 1 mile buffer)
- Conserve all large forest tracts (default >= 250 acres)
- Conserve Bay shorelines (default = 305m buffer (~1000-ft) of the tidal Bay and Atlantic shorelines)
- Conserve all high-value forest and forested wetlands identified by the Chesapeake Conservation Partnership
- Increase proportion of growth occurring as infill/redevelopment (default = 10% per decade)
- Increase urban densities (default = 10% per decade)
- Increase proportion of urban vs rural growth (default = 10% per decade)
- Expand sewer service areas (default = ~1 mile))
- Avoid growth on all soils unsuitable for septic systems (based on depth to bedrock, drainage class, saturated hydraulic conductivity, and flood frequency)
- Conserve all farmland within designated Agricultural Districts
- Conserve all lands within the floodplain (default = 100-year recurrence interval)
- Conserve all lands with flooded soils (default = frequently flooded)
- Conserve all prime farmlands and farmland of state importance
- Conserve potential restorable wetlands (applies only to PA farmland)
- Conserve all high-value farmland identified by the Chesapeake Conservation Partnership

Protecting only forests shifts growth towards farmland.

Protecting rural areas shifts growth to the urban fringe.

Anne Arundel

County, MD

Promoting infill/redevelopment decreases impacts to both farms and forests.

Thematic Scenario Results 2025 Land Use Maryland

CBLCM Land Use (Maryland)					
Scenario	Impervious	Pervious	Natural	Agriculture	Mixed Open
Historic Trends (HT)	20,764	55,316	(35,737)	(35,235)	(5,136)
Forest Conservation (FCHT)	<u>19,883</u>	59,110	(25,074)	(46,709)	(7,212)
Growth Management (GMHT)	17,732	47,561	(27,709)	(32,649)	(4,953)
Agricultural Conservation (ACHT)	19,900	44,036	(53,781)	(8,668)	(1,467)
Current Zoning (CZ)	9,860	22,692	(16,559)	(14,135)	(1,867)
Forest Conservation with Zoning (FCCZ)	9,779	24,873	(11,994)	(19,758)	(2,903)
Growth Management with Zoning (GMCZ)	8,666	19,840	(13,393)	(13,313)	(1,807)
Agricultural Conservation with Zoning (ACCZ)	9,829	19,025	(24,738)	(3,543)	(577)

(negative values in parentheses)

Thematic Scenario Results Wastewater Maryland

Maryland			
Scenario	Septic_2025	Pop25_Septic	Pop25_Sewer
Historic Trends (HT)	457,124	1,161,503	5,196,312
Forest Conservation (FCHT)	457,220	1,161,399	5,196,416
Growth Management (GMHT)	417,779	1,059,566	5,298,249
Agricultural Conservation (ACHT)	453,667	1,152,087	5,205,728
Current Zoning (CZ)	427,441	1,085,791	5,272,024
Forest Conservation with Zoning (FCCZ)	427,518	1,085,419	5,272,396
Growth Management with Zoning (GMCZ)	411,694	1,044,738	5,313,077
Agricultural Conservation with Zoning (ACCZ)	426,070	1,081,687	5,276,128

Relative Nutrient Export Rates

Phosphorus Export Rate (lbs/acre/yr)

* Includes impervious surfaces (roads, rooftops, parking lots), pervious surfaces (turf grass), and land under construction.

Potential Nitrogen Reductions (lbs.) Due to Land Conservation St. Mary's County, Maryland

	Impervious	Pervious	Natural	Agriculture	Mixed Open	
FC vs HT	(185)	333	1,152	(1,107)	(193)	
Total Nitrogen (lbs/acre/yr)	9.8	5.9	1.8	26.0	3.5	
Difference in loads (lbs/yr)	(1,817)	1,966	2,074	(28,773)	(677)	(27,227)

	Impervious	Pervious	Natural	Agriculture	Mixed Open	
FC vs CZ	(89)	221	512	(548)	(96)	
Total Nitrogen (lbs/acre/yr)	9.8	5.9	1.8	26.0	3.5	
Difference in loads (lbs/yr)	(871)	1,304	922	(14,244)	(338)	(13,227)

Range in Costs for Reducing 1 Pound of Nitrogen

nal_Meetings/Fall2013/presentations/Cost_Efficiency_WIP_Fall_Workshops_10312013.pdf

Exposure to the threat of land conversion

* Land refers to areas that are suitable for near-term development

Chesapeake Bay Watershed Scenario Elements

- Conserve riparian zones (default width = 30m)
- Conserve wetlands (NWI, State Designated Wetlands, and Potential Conservable Wetlands (PA only))
- Conserve all lands subject to inundation due to sea level rise (default = 1m rise by the year 2100)
- Conserve all lands surrounding National Wildlife Refuges (default = 1 mile buffer)
- Conserve all large forest tracts (default >= 250 acres)
- Conserve Bay shorelines (default = 305m buffer (~1000-ft) of the tidal Bay and Atlantic shorelines)
- Conserve all high-value forest and forested wetlands identified by the Chesapeake Conservation Partnership
- Increase proportion of growth occurring as infill/redevelopment (default = 10% per decade)
- Increase urban densities (default = 10% per decade)
- Increase proportion of urban vs rural growth (default = 10% per decade)
- Expand sewer service areas (default = ~1 mile))
- Avoid growth on all soils unsuitable for septic systems (based on depth to bedrock, drainage class, saturated hydraulic conductivity, and flood frequency)
- Conserve all farmland within designated Agricultural Districts
- Conserve all lands within the floodplain (default = 100-year recurrence interval)
- Conserve all lands with flooded soils (default = frequently flooded)
- Conserve all prime farmlands and farmland of state importance
- Conserve potential restorable wetlands (applies only to PA farmland)
- Conserve all high-value farmland identified by the Chesapeake Conservation Partnership

Conservation Plus BMPs...

- Incorporate "greening," not just engineering, to offset future pollution
- Engage land conservation organizations in ecological restoration efforts
- Provide a green platform for other sustainability goals
- Avoid pollution and are therefore cost-effective
- Provide incentives to grow conservation financing

Maryland's Phase III WIP (Watershed Implementation Plan) Timeline Spring 2018-June 2019

Spring	Мау	June	Summer	Fall		March	June
Review draft planning targets for major river basins; determine what gaps remain to further reduce pollution	Begin regional Phase III WIP planning meetings: <u>Western MD</u> <u>May 18</u>	Continue regional Phase III WIP planning meetings: <u>Central MD</u> June 5 <u>Lower Eastern Shore</u> June 14 <u>Upper Eastern Shore</u> June 15 <u>Southern MD</u> June 18	Provide technical webinars with details on topics of interest to stakeholders	MDE and MDA work with stakeholders to build local goals into State plan and refine local plans as appropriate; MDE work with local governments and MDA work with conservation districts to ensure most up-to- date local information is included in the statewide scenario.	2019	Draft State WIPs completed and submitted to EPA	Final State WIPs completed. Will synthesize information from multiple sources into a single scenario that will achieve water quality standards and statewide load reductions by 2025.

For more on Maryland's Phase III WIP Development, visit:

http://mde.maryland.gov/programs/Water/TMDL/TMDLImplementation/Pages/WIP-3-Vision.aspx

Why attend <u>another</u> meeting?

- Learn more about the WIP process and resources
- Understand where/how best to engage
- Meet the local/state agency staff leading the WIP process
- Position yourself as an organization that:
 - can help deliver on land conservation goals
 - is a trusted voice with private landowners
 - is a candidate for potential funding opportunities

Key Messages for Land Trusts

ASK: Please make land conservation one of the best management practices that (your) local jurisdiction includes in its WIP.

- Conserved land also provides many other benefits beyond pollution avoidance (habitat, water supply, flood control, etc.)
- Permanently conserved lands are durable locations for many Bay Programapproved BMPs
- Land trusts are important local entities with long-standing, trusting relationships with private landowners and stewardship responsibility over many acres of easements/fee lands

Questions/Discussion

Peter Claggett Research Geographer United States Geological Survey Email: <u>pclaggett@usgs.gov</u> Phone: 410-267-5771

John Griffin Program Manager Chesapeake Conservation Partnership Email: jgriffin@chesapeakeconservation.org Phone: 443-845-1613 Christine Conn Director, Office of Science & Stewardship Chesapeake & Coastal Service Unit Maryland Department of Natural Resources Email: <u>christine.conn@maryland.gov</u> Phone: 410-260-8735

Jennifer Miller Herzog Chesapeake Program Manager Land Trust Alliance Email: <u>jmillerherzog@lta.org</u> Phone: 406-580-6410

