

Balancing watershed nitrogen budgets: accounting for biogenic gases in streams

John R. Gardner · Thomas R. Fisher · Thomas E. Jordan · Karen L. Knee

Received: 14 August 2015/Accepted: 18 December 2015 © Springer International Publishing Switzerland 2016

Abstract Denitrification is critical for removal of reactive nitrogen (Nr) from ecosystems. However, measuring realistic, scalable rates and understanding the role of denitrification and other dissimilatory processes in watershed nitrogen (N) budgets remains a significant challenge in biogeochemistry. In this study, we focused on the stream reach and network scale in three Mid-Atlantic coastal plain watersheds. We applied open channel methods to measure biogenic N₂ and N₂O gas fluxes derived from both in-stream and terrestrial nitrogen processing. A large portion of biogenic N₂ flux through streams (33–100 %, mean = 74 %) was a result of groundwater delivery of biogenic N₂ with the remaining portion due to in-

Responsible Editor: Jack Brookshire.

J. R. Gardner (⊠) · T. R. Fisher University of Maryland Center for Environmental Science-Horn Point Laboratory, Cambridge, MD, USA e-mail: john.r.gardner@duke.edu

T. E. Jordan Smithsonian Environmental Research Center, Edgewater, MD, USA

K. L. Knee American University-Department of Environmental Science, Washington, DC, USA

Present Address: J. R. Gardner Duke University-Nicholas School of the Environment, Durham, NC, USA stream N₂ production. In contrast, N₂O was largely produced in-stream, with groundwater delivery contributing on average 12 % of the total biogenic N₂O flux. We scaled these measurements across one stream network and compared them to hydrologic Nr export and net anthropogenic N inputs (NANI) to a 4.8 km² watershed. The N budget revealed that, during the study period, the biogenic N2 flux through streams was comparable to the difference between NANI and hydrologic Nr export (i.e. the "missing" N). This study provides a methodological and conceptual framework for incorporating terrestrial and in-stream derived biogenic N gas fluxes into watershed N budgets and supports the hypothesis that denitrification is the primary fate of NANI that is not exported in streamflow.

Introduction

Denitrification is an essential process for removing reactive nitrogen (Nr) from ecosystems, yet it remains the least constrained transformation in the nitrogen (N) cycle (Groffman et al. 2006; Kulkarni et al. 2008; Seitzinger et al. 2006). Denitrification is carried out by microbes that require low oxygen and an energy source (e.g., organic carbon). It converts nitrate (NO_3^-) ultimately to N_2 gas, through intermediates of nitrite (NO_2^-) , nitric oxide gas (NO), and nitrous oxide gas (N_2O) . The specific controls of denitrification are well known largely through laboratory studies (Garcia-Ruiz et al. 1998; Knowles 1982; Seitzinger 1988), but it remains challenging to obtain in situ measurements in the field, to scale measurements over space and time, and to evaluate its significance to ecosystems (Groffman et al. 2006; Kulkarni et al. 2008; Seitzinger et al. 2006).

It is important to understand denitrification and the fate of anthropogenic N because water quality and global climate change are both affected by human alterations of the N cycle. Anthropogenic N loading (i.e. fertilizer, sewage) to aquatic systems, such as the Chesapeake Bay that drains the watersheds in this study, induces eutrophication and subsequent oxygen depletion with cascading ecological consequences (Diaz 2001; Diaz and Rosenberg 2008; Kemp et al. 2005; Nixon 1995). The prevalence of oxygendepleted "dead zones" is increasing (Diaz and Rosenberg 2008), and eutrophication continues to be a significant management challenge worldwide.

As denitrification removes Nr, it also produces N₂O, the dominant ozone depletor (Ravishankara et al. 2009) and a greenhouse gas with nearly 300 times the global warming potential of carbon dioxide (Shine et al. 2005). The International Panel on Climate Change (IPCC) estimated that 35 % of anthropogenic N₂O emissions are from groundwater, streams, and rivers as a result of N cycling. These are known as indirect emissions as opposed to direct emissions from soil surfaces or point sources (Foster et al. 2007; Mosier et al. 1998). However, N₂O fluxes through streams have received less attention compared to terrestrial systems despite growing evidence from modeling (Seitzinger and Kroeze 1998) and empirical studies (Baulch et al. 2011; Beaulieu et al. 2011) that suggest N-enriched lotic systems could be significant sources.

Denitrification may account for the difference between anthropogenic N inputs and stream Nr export from watersheds, known as the "missing" N. Hydrologic Nr export from watersheds commonly accounts for less than 30 % of the net anthropogenic N inputs (NANI) to a watershed (Howarth et al. 1996; Jordan et al. 1997; Van Breemen et al. 2002). The impacts of anthropogenic N cannot be fully understood without knowing the fate of the unaccounted for missing N. The missing N could be accumulating within the watershed in the form of biomass, organic matter, and Nr in groundwater, but the prevailing hypothesis is that most of the missing N is denitrified and evades to the atmosphere as N_2 (Fox et al. 2014; Van Breemen et al. 2002). However, denitrification is rarely measured and scaled to a watershed to test the hypothesized link between denitrification and the missing N (Duncan et al. 2013).

Stream networks may provide a pathway for biogenic N gas loss to the atmosphere that is significant at the scale of watershed N budgets. However, both in-stream processes as well as watershed connectivity through groundwater flow paths must be considered. It has been demonstrated that streams can be hotspots for denitrification and N removal (Duff and Triska 1990; McClain et al. 2003). Among aquatic ecosystems, streams have denitrification rates that are high per unit area, but variable over time and space (Piña-Ochoa and Álvarez-Cobelas 2006). What has received less attention is the fact that streams collect groundwater inputs carrying biogenic N gases (N2 and N_2O) produced elsewhere in the watershed through denitrification, nitrification, or perhaps other microbial processes. Thus, gaining streams may be concentrating biogenic N gases from the entire watershed that subsequently evade into the atmosphere, potentially accounting for some of the missing N. This concept was described by Fox et al. (2014) and is analogous to streams being described as "chimneys" venting terrestrially derived CO₂ (Hotchkiss et al. 2015).

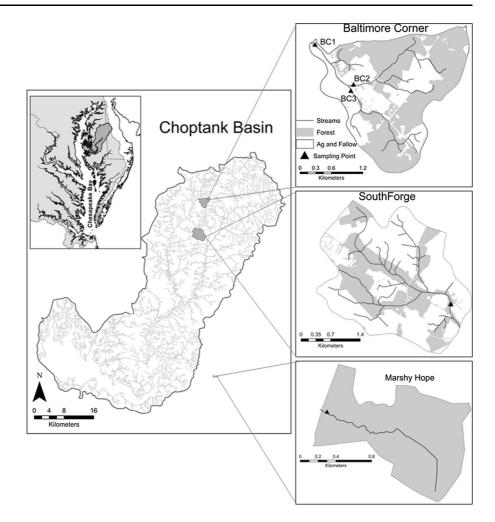
To assess the importance of streams to the venting of biogenic N gases, a reach-scale, in situ method that estimates both in-stream and watershed-derived biogenic N gas fluxes is needed for measurements at spatial scales relevant to watershed management and modeling. The open channel method (Laursen and Seitzinger 2002; McCutchan et al. 2003) is one such method used to measure in-stream denitrification at the reach scale $(10^1 - 10^4 \text{ meters})$ and has been applied in a variety of riverine systems (Harrison et al. 2005; Pribyl et al. 2005; Smith et al. 2008; Yan et al. 2004). Laursen and Seitzinger (2002) developed a multistation method that applies a Lagrangian sampling design to estimate denitrification within a conceptual moving parcel of water while accounting for atmospheric exchange. McCutchan et al. (2003) presented a one-station approach that directly calculates in-stream denitrification, correcting for atmospheric exchange and groundwater inputs. Both methods are mathematically similar and involve a whole stream N_2 mass balance to estimate water column fluxes of N_2 that are a result of biological processes. Here we present a modification of the open channel method that estimates both in-stream production and groundwater delivery of biogenic N gases. We recognize that biogeochemical processes other than denitrification could contribute to production of N_2 and N_2O in streams and watersheds (Burgin and Hamilton 2007); therefore, we will use the term "biogenic" N_2 and N_2O from in-stream production or groundwater delivery instead of referring to denitrification.

Open channel methods require measurement or estimation of the gas transfer velocity (Laursen and Seitzinger 2005; Marzolf et al. 1994). The gas transfer velocity (k, m s⁻¹) can be measured using injections of conservative tracer gases (propane and SF₆) or modeled as function of current and/or wind velocity. Use of tracer gases can be laborious and imprecise. Alternative methods are needed for measuring k in streams, for example using dissolved oxygen curves and inverse Bayesian modeling (Holtgrieve et al. 2010).

We utilized two naturally occurring noble gases, Argon (Ar) and Radon (²²²Rn) to estimate gas transfer velocity and compared different calculation methods. ²²²Rn has been used as a tracer for groundwater (Ellins et al. 1990; Genereux et al. 1993) and to estimate *k* in the open ocean in combination with radium isotopes (Peng et al. 1979; Smethie et al. 1985). Yet there are few examples of deriving *k* directly from ²²²Rn in streams (Wanninkhof et al. 1990) despite possessing promising tracer properties for this application: inert, radioactive, naturally high concentrations in groundwater, and negligible atmospheric background.

This study builds upon previous work on openchannel methods and N budgeting by incorporating groundwater delivery of biogenic N gases and scaling up measurements in a watershed N budget. Our specific objectives were to (1) assess methods for estimating gas transfer velocity from two natural tracers, Ar and ²²²Rn, (2) present a modified, singlestation open channel method to quantify biogenic N₂ and N₂O fluxes through streams due to in-stream and groundwater processes, and (3) compare N gas fluxes to NANI and hydrologic Nr export within a watershed N budget. We hypothesized that (1) headwater streams are hotspots for fluxes of biogenic N_2 and N_2O due to instream production and groundwater delivery of terrestrially derived N gases, and (2) N gas fluxes through streams account for a large portion of the missing N in the study watershed.

Methods


Sites

The study sites are located in the Choptank River and Nanticoke River Basins, which drain into the Chesapeake Bay from the Delmarva Peninsula within the Atlantic coastal plain. The topography is flat (<30 m above sea level), and the hydrogeomorphology ranges from poorly drained uplands with shallow streams to well-drained, sandy soils with incised stream channels (Hamilton et al. 1993). Land use in the Choptank Basin is dominated by cropland (62 %), followed by forest (26 %), and a small urban component (5 %) (Fisher et al. 2006; Norton and Fisher 2000). The climate is humid temperate, with an average annual rainfall of 112 cm year⁻¹ evenly distributed throughout the year. Stream flow is highly variable, with an annual average of 43 cm $year^{-1}$ and strong seasonal variations due to temperature-related evapotranspiration (Fisher et al. 2010).

This study focused on the 4.8 km² Baltimore Corner (BC) watershed, which is located within the upper Choptank Basin and includes forest and cropland (Fig. 1, Table 1) The stream network has been channelized to drain adjacent lands in production under a corn-wheat-soybean rotation. Stream sediments are sandy and soils are well drained sandy loams in the lower watershed with hydric soils occupying the uplands. BC1, BC2 and BC3 are the three main branches in the BC watershed with BC2 and BC3 flowing into BC1. These reaches are similar in channel morphology and chemistry. We included two additional sites to explore effects of different land use patterns on stream N dynamics: Marshy Hope (MH), a forested watershed with very low N and P concentrations; and South Forge (SF), with a greater percentage of cropland than the main study site BC (Fig. 1; Table 1).

Open channel studies were based on methods presented in McCutchan et al. (2003) with minor

Fig. 1 Map of Choptank Basin and study sites, Baltimore Corner (BC), South Forge (SF), and Marshy Hope (MH)

Table 1 Area, land use, soil properties, and mean (and standard error in parentheses) baseflow nitrate, total nitrogen and total phosphorus concentrations over the 2012–2013 water

year for the Marshy Hope (MH), Baltimore Corner (BC), and South Forge (SF) watersheds

Watershed	Area (km ²)	% Crop land	% Forest	% Hydric soils	NO ₃ ⁻	TN	TP
MH	1.36	1.0	99	55	1.11 (0.47)	33.3 (3.1)	0.41 (0.07)
BC	4.84	26	60	69	199 (21)	256 (23)	1.15 (0.14)
SF	8.49	66	28	35	325 (17)	354 (18)	1.32 (0.18)

modifications including reducing sampling time to 6–8 daylight hours. By reducing the sampling time from the typical 12–24 h (McCutchan et al. 2003; Laursen and Seitzinger 2002) to 6 h, we were able to achieve greater spatial and temporal coverage within a watershed. Studies were repeated seasonally from September 2012 to July 2013 in the three perennial reaches (BC1, BC2, BC3) of the BC watershed,

resulting in 11 sets of measurements. In addition, one study in each of the MF and SF watersheds was conducted in fall 2012.

Field measurements

Streamflow was determined by the area velocity method (measuring cross sectional area and velocity)

and by continuous injection of a conservative tracer, sodium bromide (NaBr, with [Br] = 200 g/L), at a rate of 23 mL min⁻¹ with a peristaltic pump at least 50 meters above the upstream sampling point. Stream water was sampled in acid-rinsed 60 mL plastic bottles every 15 min for ion analysis (Br⁻, Cl⁻, F⁻, NO₂⁻, NO₃⁻, PO₄³⁻, SO₄²⁻). Stream flow (Q, m³s⁻¹) was calculated according to Eq. 1:

$$Q = \mathbf{Br}_{stock}^{-} r / \left(\mathbf{Br}_{post}^{-} - \mathbf{Br}_{pre}^{-} \right)$$
(1)

where *r* is the injection rate (m³ s⁻¹), Br⁻_{stock} is the bromide concentration that was injected (mg m⁻³), Br⁻_{post} is the steady state concentration, and Br⁻_{pre} represents the pre-injection background concentration. In addition to monitoring during field studies, temperature and stage were continuously measured at 30 min intervals using Solinst Leveloggers (Model LT F15/M5) placed at the downstream point of each reach and watershed outlet. Rating curves have been developed to convert stage to discharge at all sites (Fisher et al. 2010).

Distances between the up and downstream sampling points defined the study reach over which groundwater discharge and chemistry was measured. These reach lengths were 364, 109, 227, 140, and 95 meters for BC1, BC2, BC3, SF, and MH respectively. Groundwater discharge into this reach (Q_{gw} , m³ s⁻¹) was estimated by the difference in streamflow between upstream and downstream sampling points (Q_{us} and Q_{ds} , respectively, m³s⁻¹) as measured by tracer dilution. The groundwater piston velocity (V_{gw} , m s⁻¹) was then calculated by dividing groundwater discharge by the stream surface area (SA, m²) estimated as the average of 10-12 stream width measurements multiplied by the reach length.

$$V_{\rm gw} = (Q_{\rm ds} - Q_{\rm us})/SA \tag{2}$$

Groundwater chemistry was sampled during each study from 3 to 5 different in-stream polyvinyl chloride (PVC) piezometers. These had dimensions of 5 cm inner diameter, with a 20 cm slotted length at a depth of 40–60 cm below the streambed and were spaced 25–100 m apart uniformly through the study reach. Hydraulic head was measured using a water level detector (Model 101 M, Solinst, Canada) or meter stick. Piezometers were pumped dry with a peristaltic pump (Solinst model 410, Georgetown, Canada) and allowed to recharge immediately prior to sampling for dissolved gases. A small submersible pump (Model GP1352, Whale Water Systems Inc., Manchester Center, VT) with positive pressure was used for sampling to reduce potential stripping of dissolved gases by negative pressure while pumping. Dissolved gases by negative pressure while pumping. Dissolved gas sample tubes were overflowed with several volumes prior to covering with septa and caps. N₂, O₂, and Ar were sampled in quadruplicate 27 mL glass tubes, N₂O in duplicate, ²²²Rn in triplicate 250-mL glass RAD-H₂O sampling bottles (Durridge, Billerica, MA), and one additional sample was taken for anion analysis. Dissolved organic carbon (DOC) was sampled during summer 2013 from each piezometer and stream.

Surface water chemistry was sampled at the downstream point. A YSI multiprobe (Model 556 MPS, Xylem Inc., Yellow Springs, OH) was placed at middepth in the thalweg to monitor stream temperature, pH, conductivity, and dissolved oxygen (DO) concentration every minute. Samples for N2, O2, Ar, and N2O were collected every 2 h. To collect samples, flexible vinyl tubing (2 mm inner diameter) was inserted to vent air from the inverted glass tube as it was submerged upside-down into the thalweg of the stream. Venting the air minimized water turbulence that might have altered dissolved gas concentrations. When the air was completely vented, the vent tube was removed and the glass tube was closed underwater with a Teflon or silicon septum held on by a plastic screw cap.

²²²Rn was measured as a tracer for gas transfer velocity every 10 min at the same sampling site. We used continuous pumping of stream water with a submersible pump (Model GP1352, Whale Water Systems Inc., Manchester Center, VT) through a RAD-AQUA attachment connected to a RAD7 radon-in-air monitor (Durridge, Billerica, MA). Barometric pressure was measured on-site to calculate gas solubility every 10 min or less using a pressure transducer (Model 3001 Gold Levelogger, Solinst, Canada).

Laboratory analyses

Ground and surface water samples were stored on ice or in a refrigerator (4 °C) until analysis, except for groundwater ²²²Rn samples which were kept at ambient temperature and analyzed within 24 h. ²²²Rn should be measured within a week after collection, but uncertainty due to radioactive decay is minimized by prompt analysis. Samples for dissolved N₂, O₂, and Ar were generally analyzed within 48 h of collection using a quadrupole mass spectrometer with a membrane inlet (MIMS; Kana et al. 1994). One standard per run was prepared with deionized water in a glass flask and allowed to equilibrate overnight in a water bath under constant stirring. MIMS was calibrated to the mean stream temperature over the day in which the samples were collected. Standards were measured initially and every 40 samples. Ion currents from the standards bracketing each set of ~ 40 samples were used to correct for instrument drift. Corrections for N₂ and Ar due to O₂ scavenging were also applied based on empirical relationships between O₂ ion currents and the magnitude of scavenging (Fisher et al. 2010; Fox et al. 2014). Equilibrium concentrations for N₂ and Ar were estimated using temperature, barometric pressure, and solubility curves provided in Hamme and Emerson (2004) and for O_2 in Garcia and Gordon (1992).

Dissolved N₂O was measured within 24 h of collection using a Shimadzu Gas Chromatograph-14B (Shimadzu Corp, Kyoto, Japan) equipped with an electron capture detector. Seven mL of water was injected into N₂-purged 12 mL Exetainers[®] (High Wycombe, UK) through the septum with a vent to maintain atmospheric pressure. Exetainers[®] were shaken vigorously for 4 min and allowed to equilibrate at room temperature for at least 30 min prior to analysis. The dissolved concentration in water was calculated using water sample and headspace volumes as well as solubility data for the measured room temperature and pressure (Weiss and Price 1980). DOC was measured using a Shimadzu TOC-5000A analyzer (Shimadzu Corp, Kyoto, Japan).

Anion samples were filtered through 45 μ M poresize membranes, and Br⁻, Cl⁻, F⁻, NO₂⁻, NO₃⁻, PO₄³⁻, SO₄²⁻ were measured using a Dionex ion chromatograph fitted with a KOH eluent generator, a conductivity detector, and an AS18 separatory column (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Groundwater ²²²Rn grab samples were analyzed using a RAD7 with a RAD-H₂O radon-in-water attachment (Durridge, Billerica, MA).

Gas transfer velocity

Gas reaeration coefficients (s⁻¹, gas transfer velocity divided by stream depth) were estimated using

conservative gases, Ar and ²²²Rn. Conversion to gas transfer velocity normalized to a common Schmidt number of 600 was utilized later for comparing values when testing three different equations that can be applied to both tracers: an equation derived from McCutchan et al. (2003), a modified version of the McCutchan et al. equation, and a simplified "unit reach" mass balance.

As noted in Laursen and Seitzinger (2004), when the measured Ar concentration in surface water deviates from the equilibrium concentration, the reaeration coefficient can be estimated by the rate of re-equilibration needed to predict observed Ar concentrations. Equation (6) from McCutchan et al. (2003) was solved for the reaeration coefficient K_{Tr} (s⁻¹) and applied to both tracers,

$$K_{Tr} = \frac{\frac{C_t - C_a}{\Delta T} Z - V_{gw}(C_{gw} - C_t)}{Z(CE_t - C_t)}$$
(3)

where C_t is the concentration of the tracer (either Ar in mmol m⁻³ or ²²²Rn in Bq m⁻³) at the end of the measurement interval, C_o is the concentration of the tracer at the beginning of the measurement interval, ΔT is the length of the time interval (s), V_{gw} is the groundwater piston velocity (discharge per unit area, m ΔT^{-1}), C_{gw} is the average groundwater tracer concentration measured from 3 to 5 piezometers spaced uniformly across the entire reach length (either Ar in mmol m⁻³ or Rn in Bq m⁻³), Z is the average stream water depth (measured from cross sections), and *CE* is the concentration of the tracer in equilibrium with the atmosphere (*CE* = 0 for ²²²Rn).

The modified McCutchan et al. equation given below (Eq. 4) is identical to Eq. 3 except that terms varying over time represent the average over ΔT instead of the final concentration and parameters are in units of per ΔT . The average between data points is used instead of the final concentration over the time interval to prevent biasing the final gas transfer velocity when ΔT is large and/or the total time of data collection is short. For Ar, ΔT was equal to 2 h and for ²²²Rn 10 min.

$$K_{Tr} = \frac{\frac{C_t - C_a}{\Delta T} Z - V_{gw} \left(C_{gw} - \frac{C_t + C_a}{2} \right)}{Z \left(\frac{CE_t + CE_a}{2} - \frac{C_t + CE_a}{2} \right)}$$
(4)

Finally, we simplified a "unit reach" mass balance adapted from a ²²²Rn mass balance (Eq. 8) in Wanninkhof et al. (1990). Conceptually, this is a one meter

long unit reach with a measured width where the tracer concentration in surface water does not change spatially in transit across this one meter. For Ar, we can then reduce Eq. 4 to:

$$K_{Tr} = \frac{V_{gw}(C_{gw} - C)}{Z(C - CE)}$$
(5)

For 222 Rn, the equilibrium concentration (*CE*) is equal to 0, simplifying further to,

$$K_{Tr} = V_{gw} \left(\frac{C_{gw}}{C} - 1\right) \frac{1}{Z}$$
(6)

where V_{gw} is the groundwater piston velocity presented in Eq. 2 (m s⁻¹), C is the ²²²Rn concentration in stream water (Bq m⁻³), and C_{gw} is the ²²²Rn concentration in groundwater (Bq m⁻³). This also assumes constant V_{gw} and C_{gw} over the measurement period. Radioactive decay of ²²²Rn was negligible since its residence time in the water column was orders of magnitude less than its half-life (3.8 days).

Reaeration coefficients (K, s^{-1}) were converted between K_{Tr} , K_{N2} , K_{N2O} , and k600 based on Schmidt numbers derived in Raymond et al. (2012) using the following equation (Wanninkhof 1992),

$$K_N = \left(\frac{Sc_N}{Sc_{Tr}}\right)^{-2/3} \times K_{Tr} \tag{7}$$

where Sc is the Schimdt number and the subscripts Tr and N refer to the tracer (Ar or 222 Rn) and any other gas of interest (N2, N2O, or the Schmidt number of 600) respectively. The exponent -2/3 (Jähne et al. 1987) was used as there was little surface turbulence in these low-gradient, coastal plain streams that were also protected from wind by riparian trees or high banks from channelization. Reaeration coefficients (K, s^{-1}) were multiplied by Z and converted to a common Schmidt number of 600 (k600, m s⁻¹), and then averaged to produce a daily mean k600 in order to compare k values from both Ar and 222 Rn across studies. When calculating flux over time for a given study, Eq. 7 was used to adjust K for temperature variability and convert to the gas of interest, K_{N_2} or K_{N_2O} .

Estimation of N2 and N2O production

To measure biogenic N gas flux we needed to distinguish it from non-biogenic N gas flux. Water

infiltrating into the soil contains some atmospherically-derived N₂ and N₂O that can be delivered to groundwater. We estimated atmospherically-derived N gases in groundwater by using Ar as a conservative tracer indicating the temperature at the time of groundwater recharge. N gases in excess of atmospheric equilibrium at the temperature during recharge were presumed to have been added to the groundwater by biotic processes. We recognize that atmospheric N_2 and N₂O may ultimately be biogenic, but for our purposes we need to measure the biogenic N gases added to the water in transit through the watershed. Using published solubility data (Colt 1984; Böhlke and Denver 1995; Hamme and Emerson 2004; Fisher et al. 2010), we derived an equation to estimate recharge temperature (T_{recharge}, °C) from Ar concentration ([Ar], mmol m^{-3}).

$$T_{recharge} = 0.0099[Ar]^{3} + 0.651[Ar]^{2} - 16.086[Ar] + 144.62$$
(8)

Note that Eq. 8 assumes a water density of (1000 kg m^{-3}) and should only be used in freshwater; see citations above to develop curves accounting for salinity. After calculating recharge temperature, the recharge concentration for any gas can be estimated using temperature dependent solubility curves. The difference between measured and recharge N₂ or N₂O concentrations were assumed to be biogenic N gas (Wilson et al. 1990).

Total flux (in-stream + groundwater) of biogenic N₂ and N₂O (F_T , mmol N m⁻² h⁻¹) was calculated using Eq. 9. Conceptually, the total flux of biogenic N₂ or N₂O is equal to the change in stream N gas inventory—non biogenic groundwater N gas inputs—N gas loss to atmosphere (Eq. 9):

$$F_T = Z \frac{C_t - C_o}{\Delta T} - V_{gw} \left(C_{rec} - \frac{C_t + C_o}{2} \right) - Z \left(\frac{KN2_t + KN2_o}{2} \right) \left(\frac{CE_t + CE_o}{2} - \frac{C_t + C_o}{2} \right)$$
(9)

where C_{rec} equals the gas concentration during groundwater recharge (mmol m⁻³). Other variables are as described in Eq. 4 and C_{rec} , V_{gw} , and Z are assumed constant. This calculation is similar to that of McCutchan et al. (2003) except that the concentration of N gases at recharge was used instead of total measured N gases in groundwater, and the concentrations and K were averaged over the 2 h intervals between our measurements. With a ΔT of 2 h, using concentrations at time t biases the calculations during the day when gas concentrations are rapidly changing due to temperature; thus, averaging becomes necessary. With a shorter ΔT or longer study duration, averaging may not be required. Our calculated rates for each 2 h interval were averaged to find the mean daily rate.

 N_2 and N_2O from groundwater delivery to the stream (F_{gw} , mmol N m⁻² h⁻¹) was calculated as follows,

$$F_{gw} = \left(C_{gw} - C_{rec}\right) V_{gw} \tag{10}$$

where C_{gw} is the total measured N₂ or N₂O concentration in emerging groundwater (mmol m⁻³), C_{rec} is the recharge concentration. F_{gw} is a flux of biogenic N gas across the groundwater-surface water interface.

In-stream biogenic N gas production (F_{st} , mmol N m⁻² h⁻¹) was found by subtracting biogenic ground-water delivery (F_{gw}) from the total biogenic flux (F_T).

$$F_{st} = F_T - F_{gw} \tag{11}$$

Note that Eq. 9 is typically used to directly solve for in-stream production by substituting the measured concentration in groundwater (C_{gw}) for the recharge concentration (C_{rec}). This is mathematically equivalent to subtracting groundwater delivery from total flux as in Eq. 11. Any two of the three terms (F_T , F_{gw} , F_{st}) can be directly calculated, and the third found by addition or subtraction.

To assess the scalability of the one station approach to the study reach and beyond, the following equation (Chapra and Di Toro 1991) was used to estimate the travel distance (m) over which stream water will exchange 95 % of its dissolved gases:

$$Distance = \frac{3V}{K}$$
(12)

where V is velocity (m s⁻¹), and K is the stream reaeration coefficient (s⁻¹). This has been used to estimate the upstream distance that influences dissolved gas measurements taken at a downstream point (Baulch et al. 2011; Beaulieu et al. 2007). For all but one measurement, the study reach was shorter than 3 V/K (Table 2). This, together with the fact that the reaches in the primary study watershed (BC) were geomorphically uniform as a result of channelization, suggests that our measurements of gas production could be extrapolated over each of the three stream segments upstream of the one-station measurement locations within the BC watershed.

Uncertainty analysis

The uncertainty in gas transfer velocity and production of N₂ and N₂O for all 13 studies was evaluated using a Monte Carlo approach. For gas transfer velocity (k600) all terms in Eqs. 3-6 were randomly sampled 1000 times from normal distributions described by empirical means and empirical or literature-derived standard deviations. The same approach was applied to Eqs. 9-11 for biogenic N gas fluxes. Error in measured N₂ and Ar was assumed to be due to limits of precision and error in equilibrium concentrations due to measurement error of temperature. Error in groundwater inputs was assumed to be 10 % of the measured value (McCutchan et al. 2003), and depth and surface area error were set at 2.5 % which lies in between values reported in McCutchan et al. (2003) and Smith et al. (2008). Variance in groundwater concentrations of N₂, Ar, N₂O, and ²²²Rn was assumed to be due to spatial variation along the reach; therefore, the standard deviation of the 3-5 piezometers was used (Table 3). Output from the Monte Carlo analysis provided a 95 % confidence interval for each method of calculating k600 and as well as rates of total flux, in-stream production, and groundwater delivery of N₂ and N₂O. Analyses were performed in R (R Core Development Team 2014) and SigmaPlot 12.5 (Systat Software Inc. 2013).

N₂O Emissions

To place our measurements of N_2O in a broader context, we estimated N_2O emission factors, assessed different calculation methods, and compared our estimates to emission factors used by the Intergovernmental Panel on Climate Change (IPCC) to scale global N_2O emissions. Indirect emission factors, or the proportion of N inputs that escape to the atmosphere as N_2O through hydrologic pathways, are applied to rivers (EF5-r), estuaries (EF5-e), and streams and groundwater (EF5-g). A value of 0.25 % is currently used for all indirect emission factors: EF5-r, EF5-e, and EF5-g (IPCC 2006). The EF5 was originally derived from several empirical studies on the ratio of dissolved N_2O –N to NO_3^- .

Table 2 Average conditions during each 6–8 h study periodincluding discharge (Q), stream depth (Z), stream width (W),distance corresponding to 95 % turnover of dissolved gases

(3 V/K), stream temperature, nitrate concentration (NO₃⁻), percent saturation of nitrogen gas (N₂), nitrous oxide (N₂O), and oxygen (O₂), and dissolved organic carbon (DOC)

Date	Site	Q (L s ⁻¹)	Z (m)	W (m)	3 V/K (m)	Stream Temp (°C)	NO ₃ ⁻ (mmol m ⁻³)	N ₂ (% sat)	N ₂ O (% sat)	O ₂ (% sat)	DOC (mmol m ⁻³)
9/25/2012	BC1	4.49	0.12	1.9	581	15.6	371	104	2463	81	_
11/20/2012	BC1	46	0.27	2.3	2609	11.2	199	106	2045	85.5	_
2/18/2013	BC1	68.3	0.3	2.4	2910	4.44	173	105	978	98.8	_
4/15/2013	BC1	167	0.33	2.5	5393	14.1	110	104	1124	80.5	_
7/17/2013	BC1	82.5	0.3	2.4	1369	24	171	103	2585	73.7	680
2/25/2013	BC2	49.8	0.24	3.4	3121	6.45	46	105	344	100	_
5/14/2013	BC2	61.8	0.29	4.2	1113	17.4	21	104	1077	88.2	_
7/9/2013	BC2	42	0.22	3.3	192	24.6	41	102	1982	51.4	2044
3/4/2013	BC3	24.5	0.33	2.6	2216	7.13	247	107	3111	93.6	_
5/6/2013	BC3	19.2	0.27	2.1	3603	13.7	230	104	5004	82.3	_
6/25/2013	BC3	28.4	0.21	2.3	1830	23	209	106	6681	63.9	531
12/13/2012	SF	81.3	0.23	3.5	8369	7.74	317	103	616	83.4	
11/15/2012	MH	9.71	0.2	1.9	2649	10.3	0.59	100	89.2	66.7	

We compared emission factors derived from the simple ratio of dissolved N₂O–N to NO₃⁻ (IPCC, 2006) to modified ratios for streams and groundwater. For streams, a modified ratio was proposed by Beaulieu et al. (2007) using the N₂O–N concentration in excess of atmospheric equilibrium (*xs* N₂O–N) divided by NO₃⁻. For groundwater, Well et al. (2005) included excess N gases in the denominator to account for transformation of NO₃⁻ along groundwater flow paths.

$$EF5g = \frac{xsN_2O \cdot N}{xsN_2O \cdot N + xsN_2 \cdot N + NO_3}$$
(13)

Watershed N budget

A watershed nitrogen budget for the BC site was developed over the 2013 water year to test our primary hypothesis linking denitrification and the missing N. We included net anthropogenic nitrogen inputs (NANI) and outputs of measured hydrologic Nr export and extrapolated biogenic N gas fluxes through streams. We estimated NANI to the BC watershed based on inputs to cropland and other land types in Queen Anne's County adjacent to the BC watershed. NANI to non-cropland is 12 kg N ha⁻¹ year⁻¹ and is the result of wet plus dry atmospheric deposition of

 Table 3 Error in measured variables used in uncertainty analysis of gas transfer velocity and N gas flux rates

Variable	Coefficient of Variation
Z	0.025
SA	0.025
V _{gw}	0.10
K	0.034*
²²² Rn _{sw}	0.12*
²²² Rn _{gw}	0.26*
Ar _{sw}	0.001*
Ar _{gw}	0.058*
N ₂ -sw	0.0012*
N ₂ -gw	0.05*
recharge N2-gw	0.053*
N_2O_{sw}	0.047*
N_2O_{gw}	1.24*
recharge N ₂ O _{gw}	0.092*

* Varied depending on measurements from each study. Shown here are average error terms across all dates

 NO_x , assuming that dry deposition equals wet (Jordan and Weller 1996). Sources of NANI to agricultural land include atmospheric deposition, fertilizer, livestock waste, and N₂ fixation by crops. N removed from harvest of crops is subtracted from inputs to calculate the net input to agricultural land, which ranges from 77 to 90 kg N ha⁻¹ year⁻¹, depending on assumptions about net loss of NH₃ to the atmosphere from livestock waste (Jordan and Weller 1996).

Given that the BC watershed is 25.6 % cropland, the NANI to the watershed would be $28.6-32.0 \text{ kg ha}^{-1} \text{ year}^{-1}$, based on the NANI estimates (Jordan and Weller 1996). Hydrologic Nr export from the BC watershed was 20 kg N ha⁻¹ year⁻¹ (66 % of NANI) over the 2013 water year based on measurements of N concentration during base flow and storm flow and continuous measurement of stream discharge collected in a related study (Gardner 2014).

Loss of biogenic N gases through the BC stream network was estimated by empirical modeling of daily N2 and N2O flux rates and stream surface area for the three streams in the BC network over the 2013 water year. N gas flux rates were multiplied by surface area for each of the three streams and summed to estimate total N gas losses from the entire network. The length of each stream segment was measured in ArcMap (version 9.3) and assumed constant over time (i.e. ephemeral channels were not considered). Daily variability in stream area was estimated by varying stream width as a function of measured discharge according to hydraulic geometry equations developed for each site (Leopold and Maddock 1953). The first order streams, BC2 and BC3, were assumed to taper to zero width while the second order channel (BC1) had a uniform channel width.

Daily groundwater delivery and in-stream production of N₂ and N₂O were scaled up independently based on empirical relationships presented in results. For groundwater delivery, we estimated variables in Eq. 10, excess N gas and groundwater piston velocity. Relationships between groundwater piston velocity (V_{gw}) and antecedent stream depth (ASD), where ASD is defined as the mean stream depth at the downstream end during the week prior to a given gas flux measurement, were used to predict daily V_{gw} from continuous stream depth gauging. Excess N gas concentrations in groundwater were linearly interpolated between measurements at a daily time step. For N_2 , this is justified by the uniform seasonal pattern in excess N2 observed in all piezometers presented in results. In-stream N2 and N2O production were directly estimated from regressions with average daily stream temperature.

This scaling of measurements to annual fluxes of biogenic N gases does not account for diel variability.

We assumed that our measured daytime rates were representative of a full 24 cycle, and therefore may have overestimated in-stream biogenic N gas production. Other studies have documented higher in-stream N₂ production during daylight (Harrison et al. 2005; Laursen and Seitzinger 2004), but a related diel study suggested there was little difference between day and nighttime in-stream N₂ fluxes at our sites (Knee et al., unpublished data).

Results

Groundwater

Consistent dilution of the Br⁻ tracer in streams and positive hydraulic heads in piezometers confirmed that the study reaches were receiving groundwater inputs. This enabled us to use ²²²Rn from groundwater inputs as a tracer for calculating K. Across all sites (BC, MH, and SF) groundwater piston velocity ranged from 0.04 to 0.72 m day^{-1} , while hydraulic head ranged from 0 to 0.36 m, with a mean hydraulic head of 0.11 m in the primary stream network, BC. Groundwater discharge per meter of stream length estimated from the Br dilution $(0.25-1.75 \text{ m}^3 \text{ day}^{-1})$ was comparable to the estimated average groundwater flux in the upstream network of the BC watershed found by dividing stream discharge by upstream length $(0.08-1.70 \text{ m}^3 \text{ day}^{-1})$. This comparison of measured with estimated groundwater discharge for each stream segment suggested that the measured groundwater fluxes were representative of the BC stream network.

Groundwater recharge temperature was critical for separating biogenic from non-biogenic N gases in groundwater. Estimated temperatures (range = 8.52-22.09 °C, mean = 15.02 °C) were comparable with a previous study where recharge temperatures ranged from 9 to 14 °C across the entire Delmarva peninsula based on similar methods (Dunkle et al. 1993). Recharge temperatures greater than 20 °C are uncommon (Fisher et al. 2010) and may indicate gas stripping by ebullition, which decreases Ar concentrations (Cey et al. 2009). We excluded data from one piezometer sampled summer 2013 in BC2 with a recharge temperature of 30 °C.

Dissolved gases in emerging groundwater were spatially variable and typically deviated considerably from equilibrium concentrations. Excess N_2 -N, the

difference between measured (Cgw) and equilibrium concentrations at a given recharge temperature (C_{rec}), was detected in all samples, with a mean of 292 mmol m^{-3} (124 % saturation) and a range of 33-591 mmol m^{-3} (102–150 % saturation). Oxygen concentrations in groundwater were below equilibrium (3.0–212 mmol m⁻³ or 0.03–60.9 % saturation) with a mean of 39.3 mmol m^{-3} (11 % saturation). N₂O-N concentrations were highly variable, ranging from 0.001 to 2.1 mmol m^{-3} with a mean of 0.39 mmol m^{-3} , and 46 % of measurements were undersaturated. Despite the variable O2 concentrations, there was a significant difference (two sample t test, P < 0.05) in mean O₂ between groups of samples partitioned by the 50 mmol m^{-3} threshold NO_3^- concentration below which denitrification is N limited (Golterman 2004; Seitzinger 1988). The mean O_2 for the high-NO₃⁻ group was 61 mmol m⁻³ and 27 mmol m^{-3} for the low- NO₃⁻ group.

Consistent temporal patterns in excess N_2 -N were observed in emerging groundwater (Fig. 2a). Excess N_2 -N followed a seasonal curve, with peaks in February to March and lows in the summer. $NO_3^$ was more variable, ranging from 0 to 1313 mmol m⁻³ with a mean of 200 mmol m⁻³ (Fig. 2b). These patterns suggested consistent and distinctive groundwater flow paths were sampled by each piezometer.

Radon proved to be an appropriate tracer for groundwater, justifying its utility as a tracer for gas transfer velocity in gaining streams. Within the BC watershed, reach averaged groundwater ²²²Rn concentration was positively related to total groundwater flux ($r^2 = 0.70$, P < 0.01, Table 4). Additionally, aggregating all individual piezometer measurements in the BC watershed, groundwater ²²²Rn activity was positively correlated with hydraulic head ($r^2 = 0.32$, P < 0.05, Table 4). These relationships both suggest ²²²Rn concentrations in emerging groundwater are linked to local hydrologic conditions within the stream and the surrounding hyporheic zone.

Stream water

Patterns in dissolved gases in surface water were comparable across all studies in agriculturally impacted streams, but strongly contrasted with the stream in the MH forested watershed. As stream temperature increased over the day (Fig. 3e), dissolved N_2 concentrations tracked equilibrium but were

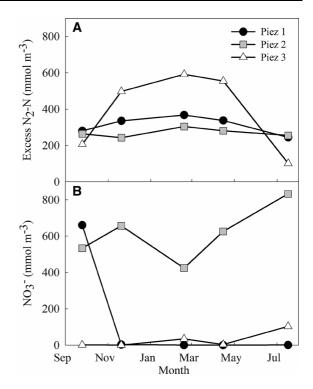
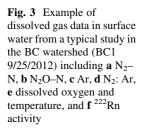


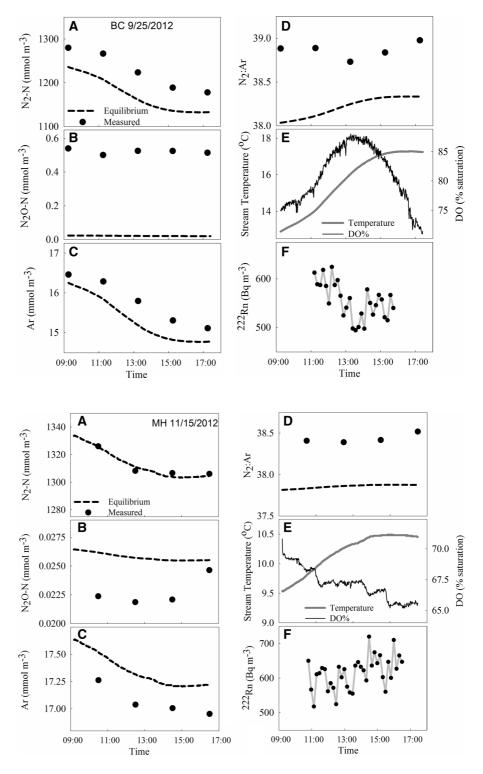
Fig. 2 Temporal patterns of NO_3^- and excess N_2 -N from individual in-stream piezometers within the main stem of the BC watershed (BC1 reach)

always supersaturated (Fig. 3a), except in the forested MH reach where N2 varied around equilibrium (Fig. 4a). The N₂:Ar ratio should be affected by changes in solubility due to diel temperature changes, but varied minimally during each study and generally did not follow patterns predicted by equilibrium N2:Ar ratio (Figs. 3d, 4d). N₂O was highly supersaturated (340-6700 %) in the BC reaches with little temporal variability (Fig. 3b), but was under-saturated in the forested MH reach (average of 89 %, Fig. 4b). In BC and SF, stream O₂ was undersaturated during all studies and peaked in the afternoon, suggesting photosynthetic production (Fig. 3e). In contrast, O_2 saturation decreased over the day at the forested MH site (Fig. 4e). ²²²Rn concentrations in stream water were variable, but often exhibited a decreasing trend from morning to afternoon (except results in Fig. 4f), consistent with the fact that gas transfer velocity increases with temperature, thus more ²²²Rn is lost as the stream warms during the day (Fig. 3f).

Combining all sites in the BC watershed, NO_3^- and N_2O showed consistent relationships. There was a significant, positive relationship between NO_3^- and

Sites	Х	Y	Equation	\mathbb{R}^2	Р	Ν
BC	ASD (cm)	Groundwater piston velocity $(m \ s^{-1})$	$y = 10^{-7}x + 8^{-7}$	0.73	<0.001*	11
BC	Reach averaged 222 Rn in groundwater (Bq m ⁻³)	Groundwater flux per reach $(m^3 h^{-1})$	y = 0.0028x - 8.2	0.70	0.001*	11
BC	Hydraulic head (cm)	²²² Rn in groundwater (Bq m ⁻³)	y = 197x + 4361	0.32	<0.001*	40
BC	Groundwater NO_3^- (µmol L ⁻¹)	Groundwater N_2O (µmol L ⁻¹)	y = 0.0013x + 0.094	0.58	<0.001*	40
BC	Stream NO_3^- (µmol L ⁻¹)	Stream N ₂ O (μ mol L ⁻¹)	y = 0.0012x + 0.19	0.60	0.003*	11
BC	Groundwater NO_3^- (µmol L ⁻¹)	Stream NO ₃ ⁻ (μ mol L ⁻¹)	y = 0.73x + 2.93	0.70	0.001*	11
BC	Stream temp (°C)	In-stream N ₂ (mmol $m^{-2} h^{-1}$)	y = 0.23x - 1.3	0.32	0.06	11
BC	Stream temp (°C)	In-stream N ₂ O (μ mol m ⁻² h ⁻¹)	$y = e^{0.21x}$	0.83	<0.001*	11
BC	Stream temp (°C)	N_2O emissions (µmol m ⁻² h ⁻¹)	$y = e^{0.21x}$	0.83	<0.001*	11
BC, MH, SF	N ₂ :Ar	Total biogenic N_2 (mmol m ⁻² h ⁻¹)	y = 4.9x - 187	0.51	0.006*	13
BC	ASD (cm)	Total biogenic N ₂ (mmol $m^{-2} h^{-1}$)	y = 0.22x - 0.5	0.78	<0.001*	11


Table 4 Details of linear and non-linear regressions including X and Y variables, R², P-value and sample size, N


An * in the P column denotes a significant relationship at $\alpha = 0.05$

 N_2O concentration in stream water ($r^2 = 0.64$, P < 0.01, Fig. 5a) as well as NO_3^- and N_2O in groundwater ($r^2 = 0.58$, P < 0.001, Fig. 5b). The slopes of these regressions were the same, but the tighter fit around the surface water data indicates the integrating effect of streams on heterogeneous groundwater flow paths. Stream water NO3⁻ concentration was also positively correlated with the average concentration $(r^2 = 0.70,$ groundwater NO_3^- P < 0.01) indicating that groundwater was the dominant NO₃⁻ source in BC stream water. The slope of this regression suggests 73 % (SE of slope = 16 %) of the nitrate in emerging groundwater appeared in surface water, demonstrating in-stream nitrate removal by denitrification or assimilation.

Gas transfer velocity

Gas transfer velocities estimated by 222 Rn were more consistent compared to those from Ar regardless of the calculation method (Fig. 6). In fact, the *k*600 values calculated from 222 Rn data and the modified McCutchan and simple unit reach equations were not significantly different when comparing the means of the distributions from the Monte Carlo analysis within all studies (pairwise t-test, P > 0.05). However, the modified McCutchan et al. (2003) equation applied to ²²²Rn estimated significantly higher values than the other two ²²²Rn approaches. Ar as a tracer for k often estimated unreasonable values in magnitude and uncertainty. The mean 95 % confidence interval across all studies for Ar was ± 0.54 (mean = 1.8), ± 37.0 (mean = 3.7), and ± 0.5 (mean = 4.2) m day⁻¹ for the McCutchan, modified McCutchan et al. (2003), and simple unit reach equations respectively. However, for ²²²Rn, the mean 95 % confidence interval across studies was ± 0.085 (mean = 3.6), \pm 0.066 (mean = 3.3), and ± 0.065 (mean = 3.4) m day $^{-1}$ for the McCutchan, modified McCutchan et al. (2003), and simple unit reach equations respectively. Among the Ar methods, the McCutchan et al. (2003) approach performed best, and is thus displayed in Fig. 6 to compare with the ²²²Rn results. Based on these results, and to be consistent with biogenic N gas

Fig. 4 As in Fig. 3, dissolved gas concentrations in surface water but in the MH forested site on 11/15/2012

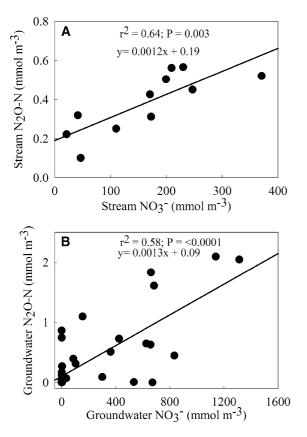


Fig. 5 a Linear regressions between NO $_3^-$ and N₂O–N concentrations for groundwater and **b** surface water using data from all BC reaches

flux equations, the method used to calculate gas transfer velocity was the modified McCutchan et al. (2003) equation with ²²²Rn data.

N2 and N2O production

The delivery of biogenic N₂ from groundwater (F_{gw}) was always positive and generally the dominant biogenic N₂ source. Including all sites, total flux of biogenic N₂ (F_T) ranged from -0.24 to 14.6, in-stream production (F_{st}) from -1.5 to 7.7, and groundwater delivery (F_{gw}) from 0.38 to 6.91 mmol N m⁻² h⁻¹ (Table 5). In the BC and SF reaches, biogenic N₂ delivery by groundwater (F_{gw}) accounted for 31-100 % (mean = 73 %) of the total biogenic N₂ flux, assuming when in-stream rates are negative 100 % of the total N₂ is from groundwater. In three of the thirteen studies, negative in-stream production was calculated. This might suggest N fixation, which is unlikely in the two studies from the BC watershed

considering the high NO_3^- concentration, but possible in the MH reach where NO_3^- concentrations were low. We interpret negative N_2 production rates in streams with high NO_3^- as below the detection limit of this method.

N₂O was produced mostly in-stream and rates varied seasonally. Including all sites, total N₂O flux ranged from -0.08 at MH in November to 215 µmol N m^{-2} h⁻¹ at BC in July (Table 5). In-stream production was detected at all sites, ranging from 0.06 to 204 μ mol N m⁻² h⁻¹, and was responsible for most (66–100 %, not including MH) of the total N₂O flux, with the remaining portion attributable to groundwater delivery (-0.15 at MH to 11.2 μ mol N m⁻² h⁻¹ at BC). N₂O emission rates were also calculated for comparison with the literature, but were nearly equivalent to in-stream production, ranging from -0.09 at MH to 202 umol N m⁻² h⁻¹ at BC (or 74-100 % of total flux at BC). N₂O emissions in the BC stream reaches were among the highest published values from lotic systems which have ranged up to 175 μ mol N m⁻² h⁻¹ (Beaulieu et al. 2007; Harrison et al. 2005; Hemond and Duran 1989; Stow et al. although higher 2005), episodic emissions $(\sim 4000 \ \mu mol \ N \ m^{-2} \ h^{-1})$ have been observed in extremely N polluted systems near wastewater treatment facilities (Hasegawa et al. 2000).

In stream production of biogenic N gases generally increased as temperature increased. In-stream production and emissions of N₂O increased exponentially with mean daily stream temperature ($r^2 = 0.83$, P < 0.01, Fig. 7b, Table 4) in the BC watershed, but groundwater delivery of N₂ or N₂O was not affected by stream temperature (P > 0.05). However, the relationship between in-stream N₂ production and mean daily stream temperature was marginally not significant ($r^2 = 0.32$, P = 0.06, Fig. 7a). Total biogenic production of N₂ gas was also significantly related to the mean N₂:Ar ratio during the study across all sties ($r^2 = 0.51$, P < 0.01, Fig. 8).

N₂O emissions

Modified ratios for deriving emission factors from streams and groundwater estimated more realistic and constrained values compared to a simple $N_2O-N:NO_3^-$ ratio. In all streams except MH, the simple ratio and modified ratio resulted in a comparable mean

Fig. 6 k600 values (m day⁻¹) from all studies using ²²²Rn data applied to all three equations (McCutchan, Modified McCutchan, Simplified Unit Reach) and Ar data applied to one equation (McCutchan). *Error bars* represent the 95 % confidence interval in only one direction

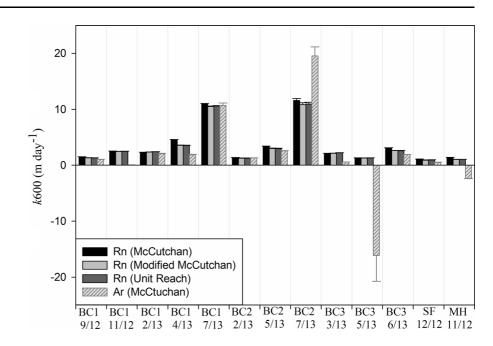


Table 5 Total, in-stream, and groundwater delivery N2 and N2O flux rates as well as N2O emissions

Date	Site	Total N ₂	In-stream N ₂	Ground-water N ₂	Total N ₂ O	In-stream N ₂ O	Ground-water N ₂ O	N ₂ O Emissions
9/25/12	BC1	2.3 (0.07)	0.9 (0.07)	1.4 (0.02)	25.8 (0.5)	21.1 (0.6)	4.69 (0.3)	23.1 (0.5)
11/20/ 12	BC1	7.0 (0.09)	3.0 (0.08)	4.0 (0.08)	41.5 (0.4)	39.3 (0.5)	2.14 (0.2)	34.8 (0.4)
2/18/13	BC1	5.3 (0.08)	1.0 (0.08)	4.3 (0.09)	17.2 (0.2)	14.6 (0.3)	2.55 (0.2)	14.2 (0.2)
4/15/13	BC1	6.7 (0.12)	0.8 (0.11)	5.9 (0.10)	30.1 (0.4)	25.8 (0.5)	4.32 (0.3)	26.8 (0.3)
7/17/13	BC1	14.6 (0.30)	7.7 (0.26)	6.9 (0.26)	215 (2.1)	204 (2.3)	10.8 (0.8)	202 (2.1)
2/25/13	BC2	2.3** (0.14)	-0.4* (0.14)	2.7 (0.03)	2.60 (0.1)	2.59 (0.1)	0.01 (0.01)	2.13 (0.1)
5/14/13	BC2	4.1 (0.18)	0.4 (0.17)	3.7 (0.08)	24.2 (0.6)	23.3 (0.6)	0.90 (0.05)	22.3 (0.6)
7/9/13	BC2	10.1 (0.43)	6.7 (0.43)	3.4 (0.11)	166 (5.0)	164 (5.0)	2.34 (0.3)	160 (5.0)
3/4/13	BC3	7.1 (0.09)	2.3 (0.10)	4.8 (0.07)	26.7 (0.3)	17.9 (1.0)	8.80 (0.9)	21.8 (0.3)
5/6/13	BC3	3.7** (0.06)	-1.5* (0.07)	5.2 (0.05)	30.5 (0.5)	22.8 (1.0)	7.66 (0.9)	22.6 (0.5)
6/25/13	BC3	6.8 (0.13)	1.0 (0.14)	5.7 (0.08)	76.3 (0.9)	65.1 (1.5)	11.2 (1.2)	66.6 (0.9)
12/13/ 12	SF	1.2 (0.04)	0.8 (0.05)	0.4 (0.03)	3.9 (0.1)	3.88 (0.1)	-0.003 (<0.01)	3.4 (0.1)
11/15/ 12	MH	-0.2 (0.02)	-0.7 (0.05)	0.5 (0.06)	-0.08 (<0.01)	0.06 (<0.01)	-0.15 (<0.01)	-0.1 (<0.01)

All N₂ rates are in mmol N m⁻² h⁻¹ and all N₂O rates are in μ mol N m⁻² h⁻¹ \pm the 95 % confidence interval in parenthesis * Negative in-stream N₂ rates in BC should be interpreted as below detection limit in streams with high NO₃⁻ concentrations ** If in-stream N₂ is negative, total N₂ should be interpreted as equal to groundwater

EF5-g of 0.32 and 0.29 % respectively; and therefore were generally in agreement with the IPCC EF5-g of 0.25 %. However, the simple ratio varied over a greater range compared to the modified ratio (Fig. 9c, d), and the modified ratio performed better in the MH stream, reducing EF5-g from 3.86 to -0.46 %. This negative EF5-g reflected that MH was a small N_2O sink.

In groundwater, methods for calculating EF5-g produced drastically different results. The simple

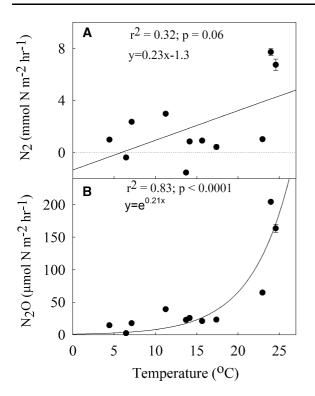


Fig. 7 Mean daily stream temperature relationship with **a** instream N_2 production and **b** in-stream N_2O production using data collected in the BC watershed. **a** is a linear fit and **b** is exponential

N₂O–N:NO₃⁻ ratio estimated unreasonably high and variable values (mean = 4.4 %, range = 0.002–70 %). The modified ratio was lower, more constrained (mean = 0.042 %, range = -0.059 to 0.59 %) (Fig. 9a, b), and comparable with the range (0.043–0.44 %) reported by Weymann et al. (2008) using the same method. Biogenic N₂–N can be the dominant N species in groundwater; therefore, excluding excess N₂–N in this calculation can drastically skew estimates of EF5-g, explaining the discrepancies when comparing these two methods.

Watershed N balance

The watershed N balance showed that biogenic N_2 gases fluxes through the stream network accounted for all of the missing N and more (117 %) over the 2013 water year. The missing N was 10.3 kg N ha⁻¹ year⁻¹, while total N biogenic N₂ gas flux through streams was 12 kg N ha⁻¹ year⁻¹ with 8.3 and 3.7 kg N ha⁻¹ year⁻¹ attributed to groundwater delivery and instream production respectively. Total biogenic N₂O

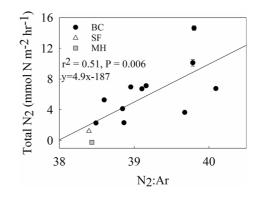


Fig. 8 Total biogenic N_2 production versus the average N_2 :Ar ratio in stream water including data from all three sites, BC, MH, and SF

flux only added an additional 0.085 kg N ha⁻¹ year⁻¹ to (0.71 %) to the missing N.

Measurement and modeling of N fluxes suggest that the relative magnitudes of different fluxes changed throughout the year. Hydrologic Nr export and groundwater delivery of biogenic N₂ were the largest fluxes in the annual watershed budget (Table 6) and were the largest fluxes most days of the year (Fig. 10). Groundwater delivery of biogenic N₂ could exceed hydrologic N export during low flow. Watershed N₂ losses due to in-stream production were typically orders of magnitude lower than hydrologic Nr export and groundwater delivery of biogenic N₂, except during summer months where watershed scale N losses from in-stream sources were equivalent to groundwater delivery of biogenic N₂.

Discussion

Nitrogen gas fluxes

The results support our hypothesis that N enriched streams are hotspots for fluxes of biogenic N gases as a result of in-stream and groundwater processes, but the relative importance of these sources differed for N_2 and N_2O . Groundwater delivery was the primary source of biogenic N_2 . The rate of delivery of biogenic N_2 from groundwater exceeded in-stream production for all but one study, which occurred in the summer of 2013. The importance of groundwater delivery of N_2 may be enhanced in the BC watershed as a result of channelization that drains groundwater by design. Yet, even in the non-channelized SF reach characterized by

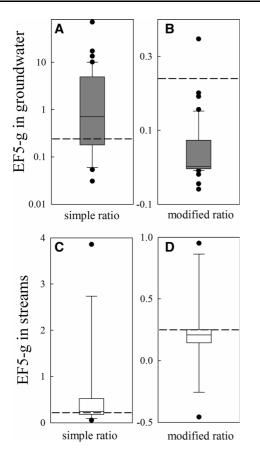


Fig. 9 Emission factors (EF5-g) in streams and groundwater (*rows*) comparing the IPCC and modified methods (*columns*). Note the different scales of the y-axis for each plot. The *dashed line* indicates IPCC's EF5-g equal to 0.25 %

low groundwater discharge and low excess N₂ values, groundwater delivery still accounted for 31 % of total biogenic N₂ flux. It should be noted that in-stream N₂ production rates were not trivial ($\sim 0-7.7$ mmol N m⁻² h⁻¹) and fit within the range of previous open channel studies (0–15.9 mmol N m⁻² h⁻¹; Baulch et al. 2010).

In contrast to N₂, groundwater delivery was a small source of N₂O compared to in-stream production, accounting for only 0.4–33 % (12 % on average) of the total N₂O flux and 15 % of N₂O emissions in the BC stream network. N₂O concentrations in emerging groundwater were highly variable, characterized by the greatest coefficient of variation compared to other dissolved gases in groundwater. However, to produce the observed total N₂O flux exclusively from a groundwater source would require reach-averaged groundwater N₂O concentrations 1.5–60 fold greater than the measured concentrations, depending on the particular study. This indicates that in-stream production was the dominant source of N_2O in stream water, and ultimately to the atmosphere.

The variability in groundwater chemistry suggests distinct N sources and biogeochemical transformations along flow paths. The positive, linear relationship (Fig. 5b) between NO₃⁻ and N₂O in groundwater suggests a terrestrial nitrification source of N₂O (Hiscock et al. 2003; Ueda et al. 1993; Vilain et al. 2011; Werner et al. 2010). High NO_3^- and N_2O samples may have traveled along flow paths with oxic conditions and less opportunity for denitrification, whereas low NO₃⁻ samples likely passed through reducing conditions associated with riparian areas and saturated depressions. The observed relationships in groundwater chemistry could also partially result from groundwater originating from source areas with differing nitrate concentrations. However, the high excess N2-N concentrations in all samples of emerging groundwater in the BC watershed provide strong evidence of widespread denitrification occurring throughout the watershed.

Controls of N₂ and N₂O Production

Temperature is one potential reach-scale control of biogenic N gas fluxes through streams. The strong non-linear effect of temperature on in stream production of N₂O (Fig. 7) likely reflects the first order control of microbial activity by temperature that has been well demonstrated for denitrification through laboratory studies (Nowicki 1994; Pfenning and McMahon 1997; Stanford et al. 1975). Another field based study of in-stream denitrification also observed a positive relationship between temperature and instream denitrification (McCutchan and Lewis 2008).

Hydraulics may also have a strong effect on N gas fluxes through streams. Biogenic N_2 flux increased with antecedent stream depth (ASD), but it is difficult to know how much this reflects the positive correlation of ASD with groundwater piston velocity (Table 4), which is a term in the flux calculation of biogenic N_2 . Floods could create ideal hydro-biogeochemical conditions for denitrification. For example, residence time in the riparian zone increases when the hydraulic head gradient between the aquifer and stream surface reverses injecting NO_3^- rich stream water into lowoxygen riparian groundwater rich in labile organic

Watershed budget term	Water year 2013	Average discharge	
Biogenic N ₂ in-stream	3.7	3.7	
Biogenic N ₂ groundwater	8.3	3.5	
Biogenic N ₂ total	12	7.2	
Biogenic N ₂ O in-stream	0.076	0.076	
Biogenic N ₂ O groundwater	0.009	0.004	
Biogenic N ₂ O total	0.085	0.08	
NANI	30.3	30.3	
Hydrologic Nr	20	8.5	
Missing $N = NANI - Nr$	10.3	21.8	
Total biogenic $N_2 + N_2O$	12	7.3	
as % of missing N	117 %	33 %	

Table 6 Annual fluxes (Kg N ha⁻¹ year⁻¹) of biogenic N₂ and N₂O and hydrologic Nr export compared to NANI during the study year (water year 2013) and during conditions of average water discharge

Fluxes of hydrologic Nr and groundwater-delivered biogenic N_2 and N_2O during average discharge are estimated by multiplying by ratio of average water yield to 2013 water yield (36/85 cm). In-stream production of N_2 and N_2O are assumed to be the same regardless of the water yield. NANI is estimated as a long term average

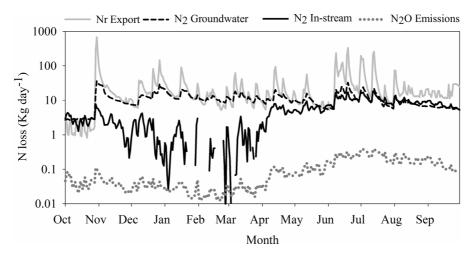


Fig. 10 Total N loss (Kg day⁻¹) from the BC stream network as a result hydrologic Nr export, groundwater delivery of biogenic N_2 , instream N_2 production, and N_2O emissions. Export was measured and N gas fluxes were empirically modeled

matter. Modeling and field studies have shown stream depth fluctuations can stimulate floodplain, riparian, and in-stream denitrification due to similar mechanisms (Gu et al. 2008, 2012; Ocampo et al. 2006; Roley et al. 2012). Furthermore, loading of biogenic N_2 gas from groundwater to streams may increase during floods as rates of groundwater discharge increase. Future studies could incorporate the effects of hydraulics and temperature to advance our understanding of biogenic N gas fluxes through streams.

The N_2 :Ar ratio in stream water is not a control of biogenic N_2 flux but may be a semi-quantitative

denitrification indicator of watershed scale detectable in streams. Aggregating data from all sites, the mean N2:Ar in surface water was positively correlated with total biogenic N₂ flux ($r^2 = 0.51$, P < 0.01, Fig. 8). To apply this in other streams, open channel measurements of biogenic N2 flux would be needed to calibrate the relationship between flux and N₂:Ar. We recognize N₂ concentration is present in the calculation of both variables of this relationship, and suggest that N₂:Ar is a potential indicator of the relative amount of biogenic N2 fluxing through the stream but not a predictive tool.

Gas transfer velocity

²²²Rn was more reliable than Ar for estimating gas transfer velocity at our study sites. The analytical error associated with Ar in stream water (0.1 %) as well as the average spatial variation in groundwater Ar concentration (5.8 %) was much lower than ²²²Rn (analytical = 12 %, spatial = 26 %, Table 2); however, the uncertainty in k from 222 Rn was orders of magnitude lower than Ar when comparing the mean 95 % confidence intervals from each method as discussed in results. Estimating k from Ar involves measuring small deviations of Ar from atmospheric equilibrium. This requires high analytical precision and accuracy in measurements of concentration, temperature, and atmospheric pressure as well as relatively homogenous groundwater Ar concentrations. This method is most applicable when Ar concentration is furthest from equilibrium due to large diel temperature swings and/or when groundwater influx is low. The ²²²Rn method requires less analytical precision given the large difference between stream and groundwater ²²²Rn activities. Also, the theoretical equilibrium value is zero, thus eliminating temperature and pressure measurement error. Uncertainty is driven by analytical error inherent to the RAD7 and the spatial variability in groundwater ²²²Rn concentrations, which can be assessed by sampling groundwater at multiple locations. Another advantage is that ²²²Rn measurements can be obtained in the field and are methodologically simple compared with Ar or artificial tracers such as propane or sulfur hexafluoride (SF_6) . Furthermore, the simplified unit reach method (Eq. 6) does not require repeated measurements of surface water ²²²Rn; therefore, it is feasible to rapidly assess gas transfer velocity in many streams with several surface and groundwater samples as well as groundwater inflow rates. However, a more rigorous calculation framework, such as Bayesian inverse modeling, would be useful in combining parameter and uncertainty estimation to open channel equations for gas transfer velocity as well as biogenic N gas production.

Limitations to open channel methods

One source of uncertainty in open-channel estimates of biogenic N_2 fluxes is the N_2 signal to noise ratio. A low signal to noise ratio makes precise measurements of in-stream N₂ production difficult in the late winter when low temperatures limit in-stream denitrification and groundwater delivery of biogenic and nonbiogenic N₂ is at a maximum. Open channel studies often report lower in-stream denitrification rates ranging from 0 to 0.03 mmol $m^{-2} h^{-1}$ during winter months (McCutchan and Lewis 2008; Pribyl et al. 2005). However, previous studies have preferentially selected reaches with less groundwater inputs compared to our study sites.

Another source of error is stripping of dissolved N₂ from groundwater due to formation of bubbles (ebullition) of N₂ or CH₄, which would decrease estimates of N2 fluxes from groundwater. Fluxes of bubbles composed primarily of N₂ totaled 6-16 % of the diffusive fluxes at two locations on the Platte River (Higgins et al. 2008), but in our study only diffusive fluxes were measured by the open-channel method. Sharp drops in N₂ often coincide with increases in methane in piezometers sampled at our study sites, suggesting that methane ebullition removes N2 (Fisher et al. 2010; Fortuin and Willemsen 2005; Fox et al. 2014). Even if groundwater N₂ has been lost by ebullition, our measurements still provide a basis for estimating dissolved N₂ input to the stream from emerging groundwater if our piezometers are representative in terms of the amount of ebullition that has occurred.

In contrast to ebullition, dissolution of air bubbles trapped during groundwater recharge ("excess air"; Heaton and Vogel 1981) could cause overestimation of biogenic N₂ in groundwater. Analysis of noble gases in emerging groundwater in the BC streams prior to this study suggested that excess air accounted for a small portion ($\sim 5 \%$) of the excess N₂ in emerging groundwater (Hamme and Fisher, unpublished data).

N₂O emissions

Contributions of N₂O from groundwater to the atmosphere may be overestimated by the IPCC emission factors. Weymann et al. (2009) demonstrated that groundwater N₂O contributes negligibly to the flux of N₂O to the atmosphere from surface soils. Similarly, we found that groundwater delivery of N₂O makes up a small portion of total biogenic N₂O emissions (15 % on average) from strongly gaining agricultural streams where groundwater would be expected to be an important source compared to other aquatic systems. N₂O may be consumed in the aquifer and riparian zones prior to emergence in surface water or diffusion through the vadose zone. Additionally, N₂O was largely produced in-stream, yet the IPCC's estimate of global N₂O emissions assumes that groundwater is the dominant N₂O source in small streams and that instream production is the dominant N₂O source in large rivers (Mosier et al. 1998). These results suggest that (1) small streams and large rivers could be grouped together, instead of streams and groundwater, under the current EF5-r of 0.25 % (IPCC 2006) and (2) the groundwater EF5-g could be lowered from 0.25 to ~ 0.04 %, but confirming this would require wider assessment beyond our geographically limited study.

Watershed N budget

Our findings support our hypothesis that N gas fluxes through streams could account for a large portion of the missing N. However, the amount of missing N was probably lower than average during our study due to the high water yield, 85 cm compared to the average water yield of 36-43 cm for nearby watersheds (Fisher et al. 2010; Darling 1962; Jordan et al. 1997). The high water yield likely increases the Nr export by the stream, explaining the unusually high portion of NANI lost through hydrologic Nr export (66 %). In contrast, hydrologic Nr export from nearby watersheds studied by Jordan et al. (1997) was estimated at 15-25 % of NANI during average flow conditions. Hydrologic Nr export is often around 25 % of NANI (Howarth et al. 2012), but the percentage of NANI accounted for by export varies widely and can reach 100 % (McIsaac and Hu 2004).

We explored the potential effect of water yield on the portion of the missing N accounted for by N gas fluxes through streams. If hydrologic Nr export from BC during a year with average water yield is proportionally lower than in our study year, then Nr export would be 8.5 kg N ha⁻¹ year⁻¹ and would account for 28 % of NANI (Table 6). To estimate fluxes during an average year we multiplied the fluxes of hydrologic Nr, and groundwater-delivered biogenic N₂ and N₂O by 36/85, the ratio of average water yield to the 2013 yield. We assumed that in-stream production of N₂ and N₂O would not be effected by water yield. Under average water yield conditions, biogenic N gas fluxes through the streams would only account for 33 % of the missing N (Table 6). This is still a significant flux approximately equal to hydrologic Nr export, but there remains ~ 50 % of NANI that cannot be accounted for in this scenario due to N storage or gas flux through soils.

Accounting for 117 % of the missing N in our study year may reflect inter-annual variability of N storage within the watershed (e.g. in soil, groundwater, biota). In this case, there may have been a net loss of stored N via hydrologic Nr export and biogenic N gas fluxes. On the other hand, it could also suggest uncertainty in watershed budget terms. But NANI varies little from year to year, while hydrologic export of Nr and loss of biogenic N gases markedly fluctuate as a function of water yield and other environmental factors. Therefore, N budgets will undoubtedly be unbalanced in a single year. Developing N budgets over several years spanning a range of water yields could provide an informative perspective on long-term watershed N budgets.

Conclusions

This study provides a conceptual and methodological framework for assessing the importance of headwater stream networks in losses of biogenic N gases. Regarding methods, we demonstrated that the one-station open channel method of McCutchan et al. (2003) can be used to quantify biogenic N₂ and N₂O production from in-stream and groundwater sources by using Ar as a tracer for groundwater recharge temperature. We also found that ²²²Rn can be used as a natural and more precise tracer for measuring gas transfer velocity in gaining streams.

Our findings support our conceptual model (Fox et al. 2014) that biogenic N gases are produced throughout the watershed and that hydrological connections funnel biogenic N gases to streams, which act as chimneys (sensu Hotchkiss et al. 2015) venting biogenic N gases to the atmosphere. Flux of biogenic N₂ from streams was dominated by groundwater sources while flux of biogenic N₂O from streams was dominated by in-stream production. Our measurements of biogenic N₂O flux supported the emission factor of 0.25 % used by the IPCC to scale up N₂O emissions in streams and rivers, but suggested a lower emissions factor for groundwater (~0.04 %).

This conceptual model of N gas flow through streams and watersheds should be explored further in a

variety of systems and incorporated into N biogeochemical accounting. Terrestrially derived N_2 fluxes through streams could account for a large portion of the missing N, but the portion will likely vary with water yield. Integrating biogenic N gas flux measurements with watershed hydro-biogeochemical models across a range of stream and watershed types presents a significant challenge, but is a logical step towards an improved understanding of N biogeochemistry and managing the ultimate fate of anthropogenic N.

Acknowledgments We thank the members of the Fisher lab group (Anne Gustafson, Rebecca Fox, Dana Bunnell-Young, Keota Silaphone, and Lindsay Tempison) and Todd Kana at the Horn Point Laboratory for their support. The following people from the Jordan lab group at Smithsonian Environmental Research Center provided field and lab assistance: Joe Miklas, Jake Wilhelm, and Carey Pelc. We thank Keith Eshleman for comments that led to the improvement of the manuscript. Funding sources include NSF (DEB# 0919181, DEB#0919141, DEB #1252923), Maryland Water Resources Research Center, Izaak Walton League-Midshore Chapter, and a Horn Point Laboratory Graduate Student Fellowship.

References

- Baulch HM, Schiff SL, Maranger R, Dillon PJ (2011) Nitrogen enrichment and the emission of nitrous oxide from streams. Glob Biogeochem Cycles 25(4): GB4013
- Baulch H, Venkiteswaran J, Dillon P, Maranger R (2010) Revisiting the application of open-channel estimates of denitrification. Limnol Oceanogr: Methods 8(5):202–215
- Beaulieu JJ, Arango CP, Hamilton SK, Tank JL (2007) The production and emission of nitrous oxide from headwater streams in the Midwestern United States. Glob Change Biol 14(4):878–894
- Beaulieu JJ, Tank JL, Hamilton SK, Wollheim WM, Hall RO, Mulholland PJ, Peterson BJ, Ashkenas LR, Cooper LW, Dahm CN (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci 108(1):214–219
- Böhlke J, Denver J (1995) Combined use of groundwater dating, chemical, and isotopic analyses to resolve the history and fate of nitrate contamination in two agricultural watersheds, Atlantic coastal plain, Maryland. Water Resour Res 31(9):2319–2339
- Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5(2):89–96
- Cey BD, Hudson GB, Moran JE, Scanlon BR (2009) Evaluation of noble gas recharge temperatures in a shallow unconfined aquifer. Groundwater 47(5):646–659
- Chapra SC, Di Toro DM (1991) Delta method for estimating primary production, respiration, and reaeration in streams. J Environ Eng-Asce 117(5):640–655

- Colt J (1984) Computation of dissolved gas concentrations in water as functions of temperature, salinity, and pressure. In: American Fisheries Society special publication (USA)
- Darling JM (1962) Maryland streamflow characteristics. Bull. 25. State of Maryland Board of Natural Resources, Department of Geology, Mines, and Water Resources
- Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30(2):275–281
- Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891): 926–929
- Duff JH, Triska FJ (1990) Denitrifications in sediments from the hyporheic zone adjacent to a small forested stream. Can J Fish Aquat Sci 47(6):1140–1147
- Duncan JM, Groffman PM, Band LE (2013) Towards closing the watershed nitrogen budget: spatial and temporal scaling of denitrification. J Geophys Res 118(3):1105–1119
- Dunkle S, Plummer L, Busenberg E, Phillips P, Denver J, Hamilton P, Michel R, Coplen T (1993) Chlorofluorocarbons (CCl3F and CCl2F2) as dating tools and hydrologic tracers in shallow groundwater of the Delmarva Peninsula, Atlantic Coastal Plain, United States. Water Resour Res 29(12):3837–3860
- Ellins KK, Romanmas A, Lee R (1990) Using Rn-222 to examine groundwater surface discharge interaction in the Rio-Grande-De-Manati,Puerto-Rico. J Hydrol 115(1–4): 319–341
- Fisher TR, Benitez JA, Lee KY, Sutton AJ (2006) History of land cover change and biogeochemical impacts in the Choptank River basin in the mid-Atlantic region of the US. Int J Remote Sens 27(17):3683–3703
- Fisher TR, Gustafson AB, Koskelo AI, Fox RJ, Kana TM, Beckert KA, Stone JP, Jordan TE, Staver KW, Sutton AJ, McCarty GW, Lang MW (2010) The Choptank basin in transition: Intensifying agricutlure, slow urbanization, and estuarine eutrophication. In: Kennish ML, Paerl HW (eds) Coastal Lagoons: critical habitats of environmental change. CRC Press, Boca Raton
- Fortuin NP, Willemsen A (2005) Exsolution of nitrogen and argon by methanogenesis in Dutch ground water. J Hydrol 301(1):1–13
- Foster P, Ramaswamy P, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schultz M, Van Dorland R (2007) Changes in the atmospheric constituents and in radiative forcing. In: Climate Change 2007: the physical science bases. Contribution of working group I to the 4th assessment report of the IPCC. Cambridge University Press, Cambridge
- Fox RJ, Fisher TR, Gustafson AB, Jordan TE, Kana TM, Lang MW (2014) Searching for the missing nitrogen: biogenic nitrogen gases in groundwater and streams. J Agric Sci 152:96–106
- Garcia HE, Gordon LI (1992) Oxygen solubility in seawater: better fitting equations. Limnol Oceanogr 37(6):1307–1312
- Garcia-Ruiz R, Pattinson S, Whitton B (1998) Denitrification and nitrous oxide production in sediments of the Wiske, a lowland eutrophic river. Sci Total Environ 210–211: 307–320

- Gardner J (2014) Denitrification, N2O emissions, and nutrient export in Maryland coastal plain streams (MS Thesis). University of Maryland
- Genereux DP, Hemond HF, Mulholland PJ (1993) Use of radon-222 and calcium as tracers in a three-end-member mixing model for streamflow generation on the West Fork of Walker Branch Watershed. J Hydrol 142(1):167–211
- Golterman HL (2004) The chemistry of phosphate and nitrogen compounds in sediments. Springer Science & Business Media, Dordrecht
- Groffman PM, Altabet MA, Böhlke J, Butterbach-Bahl K, David MB, Firestone MK, Giblin AE, Kana TM, Nielsen LP, Voytek MA (2006) Methods for measuring denitrification: diverse approaches to a difficult problem. Ecol Appl 16(6):2091–2122
- Gu C, Hornberger GM, Herman JS, Mills AL (2008) Influence of stream-groundwater interactions in the streambed sediments on NO_3^- flux to a low-relief coastal stream. Water Resources Research 44(11)
- Gu C, Anderson W, Maggi F (2012) Riparian biogeochemical hot moments induced by stream fluctuations. Water Resour Res 48(11):W09546
- Hamilton PA, Denver JM, Phillips PJ, Shedlock RJ (1993) Water quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia: Effects of agricultural activities on, and distribution of, nitrate and other inorganics constituents in the surficial aquifer, vol 93-40. USGS
- Hamme RC, Emerson SR (2004) The solubility of neon, nitrogen and argon in distilled water and seawater. Deep Sea Res Part I 51(11):1517–1528
- Harrison JA, Matson PA, Fendorf SE (2005) Effects of a diel oxygen cycle on nitrogen transformations and greenhouse gas emissions in a eutrophied subtropical stream. Aquat Sci 67(3):308–315
- Hasegawa K, Hanaki K, Matsuo T, Hidaka S (2000) Nitrous oxide from the agricultural water system contaminated with high nitrogen. Chemosphere-Glob Change Sci 2(3):335–345
- Hemond HF, Duran AP (1989) Fluxes of N2O at the sedimentwater and water-atmosphere boundaries of a nitrogen-rich river. Water Resour Res 25(5):839–846
- Higgins TM, McCutchan JH, Lewis WM (2008) Nitrogen ebullition in a Colorado plains river. Biogeochemistry 89(3):367–377
- Hiscock K, Bateman A, Mühlherr I, Fukada T, Dennis P (2003) Indirect emissions of nitrous oxide from regional aquifers in the United Kingdom. Environ Sci Technol 37(16):3507–3512
- Holtgrieve GW, Schindler DE, Branch TA, A'mar ZT (2010) Simultaneous quantification of aquatic ecosystem metabolism and reaeration using a Bayesian statistical model of oxygen dynamics. Limnol Oceanogr 55(3):1047–1063
- Hotchkiss E, Hall R Jr, Sponseller R, Butman D, Klaminder J, Laudon H, Rosvall M, Karlsson J (2015) Sources of and processes controlling CO₂ emissions change with the size of streams and rivers. Nat Geosci 8(9):696–699
- Howarth RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing J, Elmgren R, Caraco N, Jordan T (1996) Regional nitrogen budgets and riverine N & P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. In Nitrogen cycling in the North Atlantic Ocean and its watersheds. Biogeochemistry 35:75–139

- Howarth R, Swaney D, Billen G, Garnier J, Hong B, Humborg C, Johnes P, Mörth C-M, Marino R (2012) Nitrogen fluxes from the landscape are controlled by net anthropogenic nitrogen inputs and by climate. Front Ecol Environ 10(1):37–43
- IPCC (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National. In Eggleston HS, Buendia L, Miwa K, Ngara T and Tanabe K (eds) Greenhouse Gas Inventories Programme, IGES, Japan
- Jähne B, Heinz G, Dietrich W (1987) Measurement of the diffusion coefficients of sparingly soluble gases in water. J Geophys Res 92(C10):10767
- Jordan TE, Weller DE (1996) Human contributions to terrestrial nitrogen flux. BioScience 46:655–664
- Jordan TE, Correll DL, Weller DE (1997) Effects of agriculture on discharges of nutrients from coastal plain watersheds of Chesapeake Bay. J Environ Qual 26(3):836–848
- Kana TM, Darkangelo C, Hunt MD, Oldham JB, Bennett GE, Cornwell JC (1994) Membrane inlet mass spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Anal Chem 66(23):4166–4170
- Kemp W, Boynton W, Adolf J, Boesch D, Boicourt W, Brush G, Cornwell J, Fisher T, Glibert P, Hagy J (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303(21):1–29
- Knowles R (1982) Denitrification. Microbiol Rev 46(1):43
- Kulkarni MV, Groffman PM, Yavitt JB (2008) Solving the global nitrogen problem: it's a gas! Front Ecol Environ 6(4):199–206
- Laursen AE, Seitzinger SP (2002) Measurement of denitrification in rivers: an integrated, whole reach approach. Hydrobiologia 485(1–3):67–81
- Laursen AE, Seitzinger SP (2004) Diurnal patterns of denitrification, oxygen consumption and nitrous oxide production in rivers measured at the whole-reach scale. Freshw Biol 49(11):1448–1458
- Laursen A, Seitzinger S (2005) Limitations to measuring riverine denitrification at the whole reach scale: effects of channel geometry, wind velocity, sampling interval, and temperature inputs of N2-enriched groundwater. Hydrobiologia 545(1):225–236
- Leopold LB, Maddock T (1953) the hydraulic geometry of stream channels and some phyriographic implications: quantitative measurement of some of the hydraulic factors that help to determine the shape of natural stream channels: depth, width, velocity, and suspended load, and how they vary with discharge as simple power functions; Teir Interrelations are Described by the Term "hydraulic Geometry". U.S. Government Printing Office
- Marzolf ER, Mulholland PJ, Steinman AD (1994) Improvements to the diurnal upstream-downstream dissolved oxygen change technique for determining whole-stream metabolism in small streams. Can J Fish Aquat Sci 51(7):1591–1599
- McClain ME, Boyer EW, Dent CL, Gergel SE, Grimm NB, Groffman PM, Hart SC, Harvey JW, Johnston CA, Mayorga E, McDowell WH, Pinay G (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems 6(4):301–312
- McCutchan J, Lewis W (2008) Spatial and temporal patterns of denitrification in an effluent-dominated plains river.

Internationale Vereinigung fur Theoretische und Angewandte Limnologie Verhandlungen 30(2):323

- McCutchan JH, Saunders JF, Pribyl AL, Lewis WM (2003) Open-channel estimation of denitrification. Limnol Oceanogr Methods 1:74–81
- McIsaac G, Hu X (2004) Net N input and riverine N export from Illinois agricultural watersheds with and without extensive tile drainage. Biogeochemistry 70(2):253–273
- Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O (1998) Closing the global N₂O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52(2–3):225–248
- Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41(1):199–219
- Norton M, Fisher T (2000) The effects of forest on stream water quality in two coastal plain watersheds of the Chesapeake Bay. Ecol Eng 14(4):337–362
- Nowicki BL (1994) The effect of temperature, oxygen, salinity, and nutrient enrichment on estuarine denitrification rates measured with a modified nitrogen gas flux technique. Estuar Coast Shelf Sci 38(2):137–156
- Ocampo CJ, Oldham CE, Sivapalan M (2006) Nitrate attenuation in agricultural catchments: shifting balances between transport and reaction. Water Resour Res 42(1):W01408
- Peng TH, Broecker WS, Mathieu GG, Li YH, Bainbridge AE (1979) Radon evasion rates in the Atlantic and Pacific oceans as determined during the Geosecs Program. J Geophys Res 84(C5):2471
- Pfenning K, McMahon P (1997) Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. J Hydrol 187(3):283–295
- Piña-Ochoa E, Álvarez-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81(1):111–130
- Pribyl AL, Mccutchan JH, Lewis WM, Saunders Iii JF (2005) Whole-system estimation of denitrification in a plains river: a comparison of two methods. Biogeochemistry 73(3):439–455
- Ravishankara AR, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326(5949):123–125
- Raymond PA, Zappa CJ, Butman D, Bott TL, Potter J, Mulholland P, Laursen AE, McDowell WH, Newbold D (2012) Scaling the gas transfer velocity and hydraulic geometry in streams and small rivers. Limnol Oceanogr 2:41–53
- Roley SS, Tank JL, Williams MA (2012) Hydrologic connectivity increases denitrification in the hyporheic zone and restored floodplains of an agricultural stream. J Geophys Res 117(G3):G00N04
- Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33(4):702–724
- Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochem Cycles 12(1):93–113
- Seitzinger S, Harrison JA, Böhlke J, Bouwman A, Lowrance R, Peterson B, Tobias C, Drecht GV (2006) Denitrification across landscapes and waterscapes: a synthesis. Ecol Appl 16(6):2064–2090

- Shine KP, Fuglestvedt JS, Hailemariam K, Stuber N (2005) Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim Change 68(3):281–302
- Smethie WM, Takahashi T, Chipman DW, Ledwell JR (1985) Gas exchange and CO₂ flux in the tropical Atlantic Ocean determined from ²²²Rn and pCO₂ measurements. J Geophys Res 90(C4):7005
- Smith TE, Laursen AE, Deacon JR (2008) Nitrogen attenuation in the Connecticut River, northeastern USA; a comparison of mass balance and N₂ production modeling approaches. Biogeochemistry 87(3):311–323
- Stanford G, Dzienia S, Vander Pol RA (1975) Effect of temperature on denitrification rate in soils. Soil Sci Soc Am J 39(5):867–870
- Stow CA, Walker JT, Cardoch L, Spence P, Geron C (2005) N2O emissions from streams in the Neuse river watershed, North Carolina. Environ Sci Technol 39(18):6999–7004
- Ueda S, Ogura N, Yoshinari T (1993) Accumulation of nitrous oxide in aerobic groundwaters. Water Res 27(12):1787–1792
- Van Breemen N, Boyer E, Goodale C, Jaworski N, Paustian K, Seitzinger S, Lajtha K, Mayer B, Van Dam D, Howarth R (2002) Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern USA. Biogeochemistry 57(1):267–293
- Vilain G, Garnier J, Tallec G, Tournebize J (2011) Indirect N₂O emissions from shallow groundwater in an agricultural catchment (Seine Basin, France). Biogeochemistry 111(1–3):253–271
- Wanninkhof R (1992) Relationship between wind speed and gas exchange over the ocean. J Geophys Res 97(C5):7373
- Wanninkhof R, Mulholland P, Elwood J (1990) Gas exchange rates for a first-order stream determined with deliberate and natural tracers. Water Resour Res 26(7):1621–1630
- Weiss R, Price B (1980) Nitrous oxide solubility in water and seawater. Mar Chem 8(4):347–359
- Well R, Weymann D, Flessa H (2005) Recent research progress on the significance of aquatic systems for indirect agricultural N₂O emissions. Environ Sci 2(2–3):143–151
- Werner SF, Browne BA, Driscoll CT (2010) Three-dimensional spatial patterns of trace gas concentrations in baseflowdominated agricultural streams: implications for surfaceground water interactions and biogeochemistry. Biogeochemistry 107(1–3):319–338
- Weymann D, Well R, Flessa H, von der Heide C, Deurer M, Meyer K, Konrad C, Walther W (2008) Groundwater N₂O emission factors of nitrate-contaminated aquifers as derived from denitrification progress and N₂O accumulation. Biogeosciences 5(5):1215–1226
- Weymann D, Well R, Heide C, Böttcher J, Flessa H, Duijnisveld WHM (2009) Recovery of groundwater N₂O at the soil surface and its contribution to total N₂O emissions. Nutr Cycl Agroecosyst 85(3):299–312
- Wilson G, Andrews J, Bath A (1990) Dissolved gas evidence for denitrification in the Lincolnshire Limestone groundwaters, eastern England. J Hydrol 113(1):51–60
- Yan W, Laursen AE, Wang F, Sun P, Seitzinger SP (2004) Measurement of denitrification in the Changjiang River. Environ Chem 1(2):95